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Abstract

Autonomous driving systems rely on precise trajectory pre-
diction for safe and efficient motion planning. Despite con-
siderable efforts to enhance prediction accuracy, inherent un-
certainties persist due to data noise and incomplete observa-
tions. Many strategies entail formalizing prediction outcomes
into distributions and utilizing variance to represent uncer-
tainty. However, our experimental investigation reveals that
existing trajectory prediction models yield unreliable uncer-
tainty estimates, necessitating additional customized calibra-
tion processes. On the other hand, directly applying current
calibration techniques to prediction outputs may yield sub-
optimal results due to using a universal scaler for all pre-
dictions and neglecting informative data cues. In this paper,
we propose Customized Calibration Temperature with Regu-
larizer (CCTR), a generic framework that calibrates the out-
put distribution. Specifically, CCTR 1) employs a calibration-
based regularizer to align output variance with the discrep-
ancy between prediction and ground truth and 2) generates
a tailor-made temperature scaler for each prediction using
a post-processing network guided by context and historical
information. Extensive evaluation involving multiple predic-
tion and planning methods demonstrates the superiority of
CCTR over existing calibration algorithms and uncertainty-
aware methods, with significant improvements of 11%-22%
in calibration quality and 17%-46% in motion planning.

Introduction
Over the past decade, autonomous driving has achieved re-
markable advancements, driven by substantial progress in
key supporting technologies. Notably, trajectory prediction
and motion planning have emerged as two pivotal elements
within the autonomous driving software pipeline. The pre-
diction module estimates the future locations of surrounding
entities based on observed data, while the planning module
uses these prediction outputs to derive a collision-free mo-
tion path. The sequential interdependence of these two mod-
ules raises a pressing concern that the prediction inaccuracy
may compromise planning safety and even cause serious ac-
cidents. Therefore, addressing the uncertainty between these
two modules is vital in ensuring overall driving safety.

Current works mainly deal with the uncertainty associ-
ated with trajectory prediction in two manners. On the one
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hand, end-to-end autonomous driving frameworks have been
proposed to circumvent such uncertainty issues (Zeng et al.
2019, 2020; Sadat et al. 2020; Hu et al. 2021). For in-
stance, Zeng et al. (2019) introduce an end-to-end inter-
pretable neural motion planner that learns a cost volume rep-
resentation to model uncertainty in scene forecasting. Re-
gions with higher cost volume values are more likely to
contain other agents or obstacles. However, the end-to-end
frameworks introduce complexities in disentangling inter-
twined uncertainties from various input sources and incorpo-
rating individual state-of-the-art designs. On the other hand,
some approaches output predictions in the form of a distribu-
tion such that uncertainty can be represented as the variance
of the distribution. Prior works have employed Gaussian dis-
tributions (Alahi et al. 2016; Girgis et al. 2022; Nakamura
and Bansal 2022) and Laplace distributions (Zhou et al.
2022, 2023) for such uncertainty modeling. Nevertheless,
the absence of an explicit ground truth for variance and the
lack of a dedicated loss term for uncertainty introduce po-
tential unreliability in the predicted uncertainty (Feng et al.
2019). Thus, an additional calibration procedure is impera-
tive to adjust the output variance appropriately.

Directly applying existing calibration techniques from
other domains may yield sub-optimal results. For instance,
when directly utilizing temperature-based calibration meth-
ods (Guo et al. 2017; Zhang, Kailkhura, and Han 2020; Feng
et al. 2019), a global temperature scaler will be employed
for all predictions, regardless of instructive contextual infor-
mation. While a recent model introduces a variance scaling
algorithm designed for real-time safety maintenance and up-
dates (Nakamura and Bansal 2022), its resource-intensive
confidence estimation and high-dimensional computations
violate the prerequisites for calibration methods outlined
in (Zhang, Kailkhura, and Han 2020). Consequently, its ap-
plicability in resource-constrained vehicles is constrained.

In this work, we introduce a plug-and-play framework
– Customized Calibration Temperature with Regularizer
(CCTR) – that effectively calibrates prediction uncer-
tainty to improve motion planning performance. Specifi-
cally, CCTR comprises two modules: 1) a calibration-based
regularizer that enforces variance to match the actual di-
vergence between prediction and ground truth, ensuring the
calibrated variances accurately capture uncertainty, and 2)
a post-processing procedure that customizes temperature



ratios to individually scale predicted variances, informed
by context and historical information. For efficient post-
processing network design, we empirically pinpoint key fac-
tors affecting calibration quality. Notably, CCTR does not
impose any assumptions or constraints on prediction and
planning modules. Therefore, it can be seamlessly integrated
with any existing prediction and planning algorithms. Our
contributions are summarized as follows:
• Our empirical analyses confirm that current trajectory

prediction models are uncalibrated and require a cus-
tomized calibration strategy. We further identify crucial
factors that affect calibration, providing insights for ele-
vating trustworthiness in autonomous driving.

• To effectively handle the uncertainty in trajectory predic-
tions, we develop a general framework CCTR featuring a
calibration-based regularizer and a post-processing pro-
cedure. CCTR adaptively scales predicted variances to
provide more accurate and reliable location estimation of
nearby agents for better motion planning.

• We extensively evaluate CCTR using five prediction
models and two planning methods, showcasing its pre-
eminence over several state-of-the-art baselines. Specif-
ically, the results reveal that CCTR manifests an 11%-
22% improvement in calibration quality and a 17%-46%
boost in planning accuracy.

Motivation & Preliminaries
In this section, we first delve into the concept of quantile
calibration and present our investigation of calibration qual-
ity with several state-of-the-art trajectory predictors, demon-
strating they are intrinsically uncalibrated and require an
adaptive calibration scheme. Subsequently, we detail cal-
ibration measurements and conduct empirical analyses to
recognize specific factors that influence calibration.

Definition of Calibration
Let X and Y denote the input and output spaces, respec-
tively. For a regression task, given an input instance xi ∈ X ,
the probabilistic model f : X → Y generates a target pre-
diction and its associated uncertainty, characterized by the
mean µ̂i and variance σ̂i of a predetermined distribution,
respectively. In the context of trajectory prediction, each
output corresponds to a prediction vector µ̂i = [µ̂1

i , µ̂
2
i ]

and an uncertainty vector σ̂i = [σ̂1
i , σ̂

2
i ], with horizontal

and vertical coordinates indicated by (·)1 and (·)2, respec-
tively. Model f is deemed well calibrated if the estimated
uncertainty σ̂i exhibits a positive correlation with the like-
lihood of the predicted mean µ̂i being incorrect. Following
the prior works (Guo et al. 2017), we define quantile cali-
bration based on ground truth yi = [y1i , y

2
i ].

Definition 1 A trajectory predictor is perfectly quantile cal-
ibrated iff for all confidence levels p ∈ [0, 1]:

C(p) =

∑M
i=1 I{yi ≤ Q−1

(µ̂i,σ̂i)
(p)}

M
→ p (M → ∞). (1)

In the above definition, yi ≤ Q−1
(µ̂i,σ̂i)

(p) means y1i ≤
Q−1

(µ̂1
i ,σ̂

1
i )
(p) and y2i ≤ Q−1

(µ̂2
i ,σ̂

2
i )
(p); I{·} is the indicator
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Figure 1: Calibration curves of predictors. The dashed di-
agonal line represents perfect calibration, while solid curves
correspond to the calibration performance of the predictors.

function; M is the number of samples; the quantile function
Q−1

(µ̂1
i ,σ̂

1
i )
(p) of the distribution is given by:

Q−1
(µ̂1

i ,σ̂
1
i )
(p) = inf{z : p ≤ Q(µ̂1

i ,σ̂
1
i )
(z)}, (2)

where Q(µ̂1
i ,σ̂

1
i )
(z) is the cumulative distribution function

(CDF) of the output distribution, determined by its mean
µ̂1
i and variance σ̂1

i . Intuitively, perfect calibration implies
that the ground truth yi falls within a p confidence interval
approximately p percent of the time.

Calibration Observations
We demonstrate the necessity of calibration by highlight-
ing the gaps between the current trajectory prediction mod-
els and the perfectly calibrated reference. On the Argoverse
dataset (Chang et al. 2019), we learn several predictors –
ED-LSTM (Chang et al. 2019), HiVT (Zhou et al. 2022),
TNT (Zhao et al. 2021), and LaneGCN (Liang et al. 2020)
on the training set. Optimization of models involves mini-
mizing the negative log-likelihood (NLL) loss function:

LNLL = −log P (yi | µ̂i, σ̂i). (3)

Upon convergence, we calculate C(p) via Eq. (1) on 10,000
scenarios sampled from the validation set.

The apparent gaps between the dashed line and the solid
curves in Figure 1 indicate that the prediction approaches
lack proper calibration. Furthermore, all the solid curves re-
side beneath the dashed line, signifying over-confidence in
the predictions, i.e., the predicted variance is smaller than
the expected uncertainty. Accordingly, planning with over-
confident estimation may generate collision-prone paths.
As such, learning a scaler that enlarges the variance, akin
to the existing temperature scaling methods (Guo et al.
2017; Levi et al. 2022; Zhang, Kailkhura, and Han 2020),
seems to be a promising calibration remedy. However, our
in-depth scrutiny of individual predictions reveals limita-
tions in these approaches: even though most predictions dis-
play over-confidence, approximately 14.37% exhibit under-
confidence (i.e., prediction variance is larger than expected).
This under-confidence unduly restricts motion planning, re-
sulting in impractical routes or even filtering feasible paths.
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Figure 2: Effect of velocity (V), acceleration (A), distance to
the nearest actor (D), number of cars around (N), and fore-
cast horizon (H) on calibration, as measured by expected
calibration error (ECE). The non-parallel curves suggest a
relationship between ECE and the identified factors.

Hence, an imperative emerges for a customized temperature
scaling scheme that can both increase and reduce variance,
going beyond the limitations of a uniform temperature ratio.

Calibration Performance Metrics
To quantify the calibration performance, following the pre-
vious works (Cui, Hu, and Zhu 2020; Levi et al. 2022),
we compute Expected Calibration Error (ECE), Maximum
Calibration Error (MCE), and Normalized Calibration Er-
ror (NCE) based on a sampled confidence level set S =
{p1, . . . , ps, . . . , p|S|} with a size of |S| as follows:

ECE =
1

|S|

|S|∑
s=1

(|C(ps)− ps|), (4)

MCE = max
ps∈S

(|C(ps)− ps|), (5)

NCE =
1

M

M∑
i=1

∥(yi − µ̂i)⊙ (yi − µ̂i)− σ̂i∥2
∥σ̂i∥2

, (6)

where C(ps) is calculated using Eq. (1), ⊙ represents the
element-wise product, and ∥ · ∥2 is the ℓ2 norm. Intuitively,
as depicted in Figure 1, ECE measures the area between the
dashed line corresponding to perfect calibration and a solid
curve obtained for a predictor; MCE corresponds to the max-
imum deviation between the dashed line and the solid curve;
NCE assesses the disagreement between the square error of
the prediction µ̂i and the estimated uncertainty σ̂i.

Factors Affecting Calibration Performance
We aim to develop an effective and efficient method for cal-
ibrating trajectory predictions to enhance their reliability.
Given the intricacies of autonomous driving, it is crucial to
identify specific factors that affect the calibration of predic-
tors. Through experiments on the same 10,000 scenarios, we
pinpoint five decisive factors: velocity (V), acceleration (A),
distance to the nearest actor (D), number of cars around (N),

and forecast horizon (H). To understand the impact of these
factors, we divide the range of each factor observed among
the 10,000 scenarios into ten groups evenly and compute
the ECE for the scenarios falling into each group. Figure 2
shows the results of all predictors, with the group index in-
creasing with the average value of the concerned factor. Each
curve is not parallel to the horizontal axis, indicating the la-
tent relationship between calibration measurement ECE and
the identified factors. A general increasing trend in ECE is
evident for velocity, acceleration, and forecast horizon. This
aligns with our expectations, as higher values in these fac-
tors introduce more complexity and uncertainty in the pre-
diction task. In the case of the distance to the nearest actor,
we observe a U-shaped relationship, suggesting that extreme
closeness (potentially leading to stopping scenarios) or long
distance (providing high driving freedom) both pose chal-
lenges to prediction, resulting in poorer calibration. As for
the number of cars around, ECE exhibits a clear decreasing
trend. This implies that a reduced number of nearby vehicles
leads to increased driving options and more uncertainty.

Methodology
This section elaborates on CCTR, which consists of two
main components: 1) a calibration loss-based regularizer
that can be incorporated into any prediction model train-
ing to guide the variance to align with the discrepancy be-
tween prediction and ground truth, and 2) a subsequent post-
processing procedure, informed by the calibration insights
from the previous section, that learns tailored temperature
coefficients for prediction outputs. Figure 3 overviews the
design of CCTR, where numbered text boxes indicate the
sequence of operations within CCTR.

Calibration Regularizer
When trained with NLL loss defined in Eq. (3), the trajec-
tory predictor learns to output variances in an unsupervised
manner since there is no explicit ground truth for variances.
Consequently, this loss formulation does not inherently en-
sure well-calibrated uncertainty. The NCE metric shown in
Eq. (6) suggests that, for each sample xi, the predicted vari-
ance σ̂i should match the actual difference between pre-
diction and ground truth. In this regard, we introduce a
calibration-oriented regularizer LCAL to guide the variance:

LCAL = ∥(yi − µ̂i)⊙ (yi − µ̂i)− σ̂i∥2. (7)

Accordingly, the loss function LCCTR for trajectory predic-
tion models in our CCTR is:

LCCTR = LNLL + λ · LCAL. (8)

The hyper-parameter λ controls the effect of calibration loss
LCAL, forcing the predicted variances to accurately capture
the deviation between prediction and ground truth for im-
proved calibration performance.

Post-Processing Procedure
Following (Guo et al. 2017), we develop a post-processing
algorithm to calibrate the obtained distributions from the
predictor. Building on our findings in the previous section,
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Figure 3: Framework of our CCTR, where ST is the abbreviation of spatiotemporal and || is the concatenation operation. The
numbered text boxes illustrate the sequence of operations in CCTR.

we propose to consider the instructive context information
within each driving scene and derive a customized tempera-
ture scaler to calibrate the uncertainty in each prediction.

We start by generating Bird’s Eye View (BEV) im-
ages of observed frames based on map information and
track records, compressing spatiotemporal knowledge and
lane constraints into a 4-dimensional input matrix Min ∈
RFi×W×H×C. Here, Fi, W, H, and C represent the number
of observed frames, the width and height of the image, and
the number of channels in the image. This input matrix fa-
cilitates the extraction of kinematic and social features Mks,
as well as spatiotemporal information Mst.
Kinematics & Social Features: We extract kinematic and
social factors crucial to calibration for each agent in ob-
served frames, including velocity, acceleration, distance to
the nearest actor (both in front and behind), and the count of
nearby cars. This results in Mks ∈ RL×5Fi , where L is the
number of agents.
Spatial & Temporal Information: To incorporate sur-
rounding knowledge and lane restrictions for calibration, we
employ a spatiotemporal (ST) extractor that learns a compre-
hensive and concise representation of environmental infor-
mation. We combine convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) for spatial and se-
quential information extraction, respectively (Donahue et al.
2015; Zhang et al. 2019). A CNN is first applied to observed
frames Min, obtaining Msp ∈ RFi×d1 which embeds spatial
knowledge of each BEV image into a d1-dimensional vec-
tor. Then, an RNN with the gated recurrent unit (GRU) (Cho
et al. 2014) is utilized for the representations of observed
frames. Each row zt ∈ Rd1(t ∈ {1, . . . , Fi}) in Msp serves
as the input of GRU. After the update of GRU, the final
d2-dimensional hidden state hFi ∈ Rd2 represents the spa-
tiotemporal information representation. As all agents in the
same scenario share a single spatiotemporal embedding, we
replicate it for L times to form Mst ∈ RL×d2 .
Decoder: We concatenate the matrices Mks and Mst to yield
the final representation that encodes instructive kinematics,
social, and spatiotemporal information. This representation
is then fed to a linear layer with Softplus activation as a de-
coder to output tailored temperature ratios:

Mtm = Decoder(Mks ||Mst), (9)

where || denotes concatenation, Mtm ∈ RL×2Fo is the output

matrix, and Fo is the prediction step size.
Training: Our calibration model is trained on the validation
set by minimizing the NLL with rescaled variance LRNLL:

LRNLL = −log P (yi | µ̂i, σ̂i ⊙ γi), (10)

where γi is the corresponding temperature ratios from Mtm.

Discussion
CCTR satisfies all three desiderata for calibration methods
stated in (Zhang, Kailkhura, and Han 2020):
• Accuracy Preservation: CCTR achieves comparable or

even improved prediction performance with an appropri-
ate hyperparameter λ, compared to the original predictor
implementations.

• Data Efficiency: CCTR is a parametric model with only
1.5 Mb size, which theoretically requires less data to con-
verge (Zhang, Kailkhura, and Han 2020). Our evaluation
with varying validation data sizes further supports this
advantage.

• Expressiveness: CCTR exhibits much better perfor-
mance than calibration baselines when exposed to more
data, owing to its capacity to effectively leverage avail-
able data to produce contextually-informed distribution-
specific temperature scalers.

Furthermore, CCTR can be utilized with diverse spatiotem-
poral extractors, e.g., 3D CNN (Ji et al. 2012), and be inte-
grated with any prediction and planning approaches.

Experiments
This section presents the experimental evaluation of
CCTR against several prevailing calibration methods and
uncertainty-aware baselines to demonstrate its superiority in
uncertainty estimation and downstream planning tasks. Ad-
ditionally, we investigate the contribution of each compo-
nent within CCTR and empirically validate how CTTR ful-
fills the three desiderata for calibration methods.

Experimental Settings
Dataset: We conduct our experiments on the Argoverse
dataset (Chang et al. 2019), which provides agent trajec-
tories with high-definition map data. The dataset consists
of 205,942 training and 39,472 validation scenarios. As the



Model Method ECE MCE NCE ℓ2 error (RRT∗) ℓ2 error (NMP) ADE FDE

ED-LSTM

Original 0.1567 0.2240 0.1326 8.6258 3.4711 1.74 3.99
TS 0.1540 0.2184 0.1291 6.7297 2.6980 \ \
IR 0.1535 0.2180 0.1289 6.6031 2.4724 \ \

ETS 0.1493 0.2080 0.1204 5.5453 2.3090 \ \
CCTR 0.1335 0.2005 0.1030 4.6017 2.1459 1.74 3.95

HiVT

Original 0.1488 0.2196 0.1286 7.8968 3.1290 0.69 1.04
TS 0.1425 0.2142 0.1197 6.3471 2.5821 \ \
IR 0.1402 0.2115 0.1188 6.1556 2.4166 \ \

ETS 0.1406 0.2087 0.1178 5.8601 2.2802 \ \
CCTR 0.1295 0.1986 0.0984 4.3310 2.0102 0.69 1.03

TNT

Original 0.1536 0.2205 0.1318 8.2737 3.3691 0.93 1.69
TS 0.1512 0.2195 0.1284 6.4402 2.5418 \ \
IR 0.1518 0.2182 0.1284 6.1299 2.4328 \ \

ETS 0.1510 0.2131 0.1232 5.4753 2.3870 \ \
CCTR 0.1313 0.1998 0.1025 4.5503 2.2002 0.92 1.69

LaneGCN

Original 0.1542 0.2213 0.1307 8.0139 3.3217 0.72 1.10
TS 0.1528 0.2183 0.1285 6.7524 2.6032 \ \
IR 0.1496 0.2114 0.1271 6.6016 2.5814 \ \

ETS 0.1513 0.2165 0.1272 6.1427 2.3995 \ \
CCTR 0.1335 0.2017 0.1028 4.5211 2.1259 0.71 1.10

AutoBots

Original 0.1550 0.2205 0.1301 7.6814 3.3747 0.73 1.10
TS 0.1531 0.2162 0.1279 6.5682 2.7313 \ \
IR 0.1494 0.2108 0.1264 6.4779 2.6652 \ \

ETS 0.1461 0.2071 0.1255 5.9251 2.3890 \ \
CCTR 0.1328 0.2003 0.1020 4.3785 2.2348 0.72 1.09

Table 1: Calibration (third column), planning (fourth column), and prediction (last column) performance comparisons among
calibration algorithms. The bold values denote the best performance and \ means it does not affect the prediction results.

ground truth is unavailable for the testing example, we sepa-
rate 10,000 training samples for testing purposes. The goal is
to output the future movements of agents for the next three-
second given the first two-second trajectories.
Calibration Baselines: To show the CCTR’s superiority in
uncertainty calibration, we compare it with the following
prevalent calibration methods:

• Temperature Scaling (TS) (Levi et al. 2022), which sim-
ply utilizes a global temperature to scale the variance.

• Isotonic Regression (IR) (Kuleshov, Fenner, and Ermon
2018), which trains an auxiliary model based on isotonic
regression to fit C(p) defined in Eq. (1).

• Ensemble Temperature Scaling (ETS) (Zhang, Kailkhura,
and Han 2020), which learns a mixture of uncalibrated,
TS-calibrated, and uniform probabilistic outputs.

Prediction & Planning Methods: To indicate CCTR’s
adaptability, we integrate it with five state-of-the-art tra-
jectory prediction models: ED-LSTM (Chang et al. 2019),
HiVT (Zhou et al. 2022), TNT (Zhao et al. 2021),
LaneGCN (Liang et al. 2020), and AutoBots (Girgis et al.
2022), along with two planning algorithms: sample-based
RRT∗ (Kuffner and LaValle 2000) and imitation learning-
based NMP (Zeng et al. 2019; Hu et al. 2021).
Metrics: For calibration assessment, we use three widely
used measurements: ECE, MCE, and NCE defined in
Eq. (4), Eq. (5), and Eq. (6), respectively. For motion plan-
ning evaluation, we employ the ℓ2 distance between corre-

sponding waypoints of the planned trajectory and the ground
truth of human driving. Regarding prediction accuracy, we
follow the benchmark and utilize Average Displacement Er-
ror (ADE) and Final Displacement Error (FDE).

Implementation Details: Our post-processing model is
trained for 50 epochs using Adam optimizer (Kingma and
Ba 2015). The batch size is set to 128, with an initial learn-
ing rate of 5×10−4 and halved every ten epochs. The 3-layer
CNN uses 3×3 convolution filters, with filter counts of 8, 16,
and 32, respectively. Each convolution layer is followed by
a linear layer with ReLU activation and a 4×4 max-pooling
layer. The hyper-parameter λ, hidden size, number of layers,
and the dropout rate of GRU are 0.1, 128, 3, and 0.1, respec-
tively. We find that our model is relatively insensitive to most
hyperparameters, except for the GRU’s hidden size. We test
a range of values, including {32, 64, 128, 256, 512}, and
observe that the performance improves up to a hidden size
of 128. Beyond this point, we notice similar or worse per-
formance due to overfitting. As a result, we set the hidden
size of GRU to 128. We use 5 random seeds to conduct ex-
periments and we find that all methods are insensitive to the
selection of random seeds. Consequently, we only report the
mean value and ignore the standard deviation for simplicity.
For uncertainty-aware planning, the uncertainty estimation
from the trajectory prediction module with or without cal-
ibration assumes the oval region with one variance as the
possible location of surrounding vehicles.
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Figure 4: The relationship (with correlation coefficient) be-
tween ADE and variance. CCTR demonstrates a clear posi-
tive correlation between these two variables.

Method ℓ2 error Training (hr) Inference (ms)
MCDropout 3.8396 1.9 256

DE 4.0127 3.4 149
E2E 2.3012 4.3 217

FF 2.4184 4.1 201
CCTR-EN 2.1459 2.1 137

Table 2: Planning comparisons with end-to-end planners and
uncertainty-aware methods.

Results
Calibration Comparison: The calibration comparisons are
presented in the third column of Table 1. CCTR consistently
outperforms all calibration baselines by a significant mar-
gin. For example, with the ED-LSTM predictor, CCTR re-
duces the ECE by 15% and 11% compared with the original
prediction and the most potent baseline (ETS), respectively.
This empirical evidence demonstrates that CCTR, which
generates customized temperature ratios based on critical
factors in the dynamic environment, is more effective than
all baselines in achieving more calibrated predictions.

Moreover, we compare CCTR with baselines on their
ability to signal unreliable outputs. To this end, we sort the
variances in ascending order, divide them into ten groups,
calculate the average ADE for each, and plot ADE against
variance using the ED-LSTM model in Figure 4. For clarity,
we only present the curve for ETS as it consistently performs
the best among the baselines. The original trajectory predic-
tion with a correlation coefficient of -0.01 displays no corre-
lation between variance (uncertainty) and ADE (precision).
Calibration by ETS partially mitigates this issue, showing a
better correlation with a correlation coefficient of 0.79. In
contrast, the curve of CCTR is a roughly increasing polyline
with a correlation coefficient of 0.95, indicating a positive
correlation between the two variables. In other words, for
models calibrated using CCTR, higher variance implies a
likely erroneous prediction. Hence, additional mechanisms
can be designed based on variance to proactively avert po-
tential danger caused by uncertain predictions.
Planning Performance: The fourth column of Table 1 high-

Method ECE MCE NCE
CCTR-KI 0.1395 0.2071 0.1193
CCTR-SO 0.1402 0.2089 0.1216
CCTR-ST 0.1420 0.2091 0.1133
CCTR-RE 0.1367 0.2013 0.1198
CCTR-PP 0.1468 0.2112 0.1086

CCTR 0.1335 0.2005 0.1030

Table 3: Ablation study for CCTR with ED-LSTM.

lights CCTR’s superior performance over all calibration
baselines in motion planning. Specifically, using the ED-
LSTM predictor and RRT∗ planners, CCTR decreases the
ℓ2 error by 46% and 17% compared to the original predic-
tion and the most effective baseline (ETS), respectively. This
affirms that calibrated predictions are beneficial for subse-
quent planning. For a comprehensive evaluation, we com-
bine CCTR with ED-LSTM predictor and NMP planner,
obtaining CCTR-EN, and compare it with 1) two leading
prediction uncertainty-aware planners – FF (Hu et al. 2021)
and E2E (Zeng et al. 2019), and 2) two popular uncertainty
capture methods without calibration – MCDropout (Gal and
Ghahramani 2016) and Deep Ensemble (DE) (Lakshmi-
narayanan, Pritzel, and Blundell 2017). The results in Ta-
ble 2 demonstrate that: 1) CCTR-EN achieves the mini-
mum ℓ2 error, showcasing the strength of calibrating un-
certainty estimation. Moreover, the ℓ2 error can be further
reduced with improved prediction and planning algorithms
(e.g., 2.0102 with HiVT); 2) CCTR-EN converges quickly
since it only requires adding a regularization term in pre-
diction model training and learning a small model on the
validation set. In contrast, end-to-end models exhibit slow
convergence due to intermediate agents and multi-task ob-
jectives; 3) For inference time, CCTR-EN introduces a neg-
ligible delay as it only adds the forward time of calibration
models, while other methods require time-consuming oper-
ations, such as multiple predictions of MCDropout.
Ablation Results: CCTR comprises four fundamental com-
ponents: kinematics feature extractor (KI), social feature
extractor (SO), spatiotemporal feature extractor (ST), and
regularizer (RE). To assess the impact of each component
on calibration performance, we implement four variants of
CCTR: CCTR-KI, CCTR-SO, CCTR-ST, and CCTR-RE,
where each variant removes the corresponding component.
Additionally, we remove the entire post-processing (PP)
module, resulting in the variant CCTR-PP, to emphasize its
contribution. Table 3 presents the results of all variants with
the ED-LSTM predictor. The noticeable performance gap
between all variants and CCTR confirms the efficacy of each
respective component. The worse result of CCTR-ST sug-
gests that the spatiotemporal information ignored by previ-
ous works is crucial for improvement. The inferior results of
CCTR-KI and CCTR-SO align with our calibration obser-
vations that kinematics and social features are key factors in
uncertainty calibration.
Three Merits of CCTR: As mentioned before, CCTR meets
all three desiderata for calibration approaches. Now, we pro-
vide experimental evidence as follows:
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Figure 5: ECE comparisons of various calibration methods
with validation data size.

– Accuracy Preservation: The last column of Table 1 demon-
strates that, although CCTR introduces a new regularization
loss, it manages to maintain and even boost the prediction
performance of multiple trajectory predictors.
– Data Efficiency: We examine the influence of calibration
sample size on calibration performance with ED-LSTM in
Figure 5. CCTR is data-efficient, requiring only a few cali-
bration samples to achieve decent calibration performance.
– Expressiveness: A more expressive method should yield
a lower ECE when sufficient calibration samples are avail-
able. Figure 5 shows a substantial gap between CCTR and
other baselines when more data is available for calibration.
Additionally, the temperature ratios obtained by CCTR are
more customized, with approximately 13% of generated ra-
tios being less than one (i.e., decreasing the variance).

Related Work
As most current trajectory prediction models are deep neu-
ral networks (DNNs) (Huang et al. 2022), we first review
the literature on capturing and calibrating uncertainty in tra-
ditional DNNs and then elaborate on specific methods in ex-
isting prediction and planning (Pred & Plan) approaches.

Uncertainty & Calibration in DNNs
As suggested by Kendall and Gal (2017), DNNs exhibit
two major uncertainties: epistemic and aleatoric uncertainty.
To address epistemic uncertainty, Bayesian learning offers a
mathematically grounded framework, and several Bayesian
approximation methods have been designed to estimate un-
certainty, such as MCDropout (Gal and Ghahramani 2016).
Moreover, with the help of ensemble learning, Deep En-
semble (Lakshminarayanan, Pritzel, and Blundell 2017) in-
tegrates multiple models for uncertainty estimation.

On the other hand, for aleatoric uncertainty estimation,
Kendall and Gal (2017) propose a unified Bayesian learning-
based approach that directly maps input data to aleatoric un-
certainty estimations. Our framework aligns with this direc-
tion, where the uncertainty is represented as the predicted
variance of the output distribution. However, the absence
of effective distribution calibration yields unreliable uncer-
tainty estimations and further harms downstream tasks (Guo

et al. 2017; Wang et al. 2021). For instance, CNNs ex-
hibit over-confidence (Guo et al. 2017) while Graph Neu-
ral Networks display under-confidence (Wang et al. 2021).
To mitigate this problem, temperature scaling-based meth-
ods are proposed to refine model outputs. Nevertheless, the
temperature ratio in these approaches is unified for all out-
comes, restricting calibration efficacy. Other methods, like
isotonic regression-based algorithms, have been developed
to calibrate neural network regressors in a more refined
way (Kuleshov, Fenner, and Ermon 2018). However, they
neglect the informative context of data and lack generaliz-
ability. To address these issues, our CCTR leverages crucial
contextual information to learn a tailored temperature ratio
for each prediction, improving calibration performance.

Uncertainty & Calibration in Pred & Plan
In addition to the above DNN-oriented approaches, specific
efforts have been made to incorporate uncertainty into tra-
jectory prediction for motion planning (Liu et al. 2023),
which can be categorized into two groups. A line of exist-
ing work involves using surrogates to model the uncertainty,
such as cost volumes (Zeng et al. 2020), semantic occupan-
cies (Sadat et al. 2020), and freespace (Hu et al. 2021). How-
ever, these approaches require integrating the prediction and
planning components in an end-to-end framework, sacrific-
ing the benefit of modularity.

Another line of work adheres to the traditional stack
where prediction and planning are sequential modules
with some mechanisms designed between them to esti-
mate uncertainty. For example, Wu, Huang, and Lv (2022)
consider variance in the predicted distribution as uncer-
tainty and recklessly incorporate it into planning. How-
ever, uncalibrated distribution variance can be unreliable
for downstream tasks. Building on this, Nakamura and
Bansal (2022) further propose to scale variances for safe
planning. However, their approach is not data-efficient
due to resource-intensive confidence estimation and high-
dimensional reachable set computations, which limit its
practical applicability. To address these limitations, our
CCTR directly calibrates the distribution variance of the pre-
dicted outputs, aiming to efficiently achieve more precise
uncertainty estimation for the subsequent planning task.

Conclusion
This paper presents a novel CCTR framework to address
the challenge of proper uncertainty calibration in trajec-
tory prediction models, improving their reliability. CCTR
offers a solution by introducing a calibration-oriented reg-
ularizer to align predicted variances with ground truth di-
vergence and generating tailor-made temperature scalers for
each prediction based on context and historical information.
Extensive experiments demonstrate the superiority of CCTR
over various baselines in uncertainty estimation and down-
stream planning tasks, leading to better-calibrated predic-
tions and more trustworthy planning. Moreover, the ablation
studies show the effectiveness of each component, with in-
depth empirical analysis verifying CCTR’s desirable proper-
ties. Future work can exploit more advanced post-processing
modules to further improve calibration quality.
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