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Visual sensing has been widely adopted for quality inspection in production processes. This paper presents
the design and implementation of a smart collaborative camera system, called BubCam, for automated quality
inspection of manufactured ink bags in Hewlett-Packard (HP) Inc.’s factories. Specifically, BubCam estimates
the volume of air bubbles in an ink bag, which may affect the printing quality. The design of BubCam faces
challenges due to the dynamic ambient light reflection, motion blur effect, and data labeling difficulty. As a
starting point, we design a single-camera system which leverages various deep learning (DL)-based image
segmentation and depth fusion techniques. New data labeling and training approaches are proposed to utilize
prior knowledge of the production system for training the segmentation model with a small dataset. Then, we
design a multi-camera system which additionally deploys multiple wireless cameras to achieve better accuracy
due to multi-view sensing. To save power of the wireless cameras, we formulate a configuration adaptation
problem and develop the single-agent and multi-agent deep reinforcement learning (DRL)-based solutions to
adjust each wireless camera’s operation mode and frame rate in response to the changes of presence of air
bubbles and light reflection. The multi-agent DRL approach aims to reduce the retraining costs during the
production line reconfiguration process by only retraining the DRL agents for the newly added cameras and
the existing cameras with changed positions. Extensive evaluation on a lab testbed and real factory trial shows
that BubCam outperforms six baseline solutions including the current manual inspection and existing bubble
detection and camera configuration adaptation approaches. In particular, BubCam achieves 1.3x accuracy
improvement and 300x latency reduction, compared with the manual inspection approach.
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1 INTRODUCTION
With the recent advancements of the Internet of Things (IoT) infrastructure and deep learning
(DL) techniques in dealing with complex data patterns, visual inspection has been increasingly
employed to enable the automated quality control at manufacturing lines [3, 13, 17]. The purpose
is to automatically detect any defects in the manufactured products with low latency before the
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final distribution to the customers [25]. The designs and implementations of such automated
inspection systems often require a lot of efforts in dealing with the strict requirements, practical
constraints and complex environmental conditions of the industrial processes. In this paper, the
target application is the quality inspection of the ink bag products manufactured in Hewlett-Packard
(HP) Inc.’s ink factories for the large industry printers. It is the final quality control procedure that
targets at estimating the volume of air bubbles inside the ink bags. During the production process,
the ink-filling machines may inject the air bubbles into the ink bags. The ink bags with a high
volume of the air bubbles can significantly reduce the printing quality of the printers. Specifically,
during the printing process, the ink may absorb bubbles, which leads to unstable velocity of the ink
droplets [8]. Thus, the quality inspection is needed to ensure that the ink bags with a large volume
of air bubbles are not distributed to the customers.
The current protocol of HP’s factories adopts a manual quality inspection procedure which

begins with removing the outer plastic layer of the inspected bag and then squeezes the air bubbles
to form an air cone in a corner of the bag. Finally, the size of the air cone is manually measured
to determine the volume of the air bubbles. This manual measurement suffers from low accuracy
and high latency. From the historical records, it can take up to 10 minutes to inspect an ink bag.
Moreover, it is a costly destructive test due to the removal of the outer layer of the ink bag.
To increase the inspection accuracy and throughput, and reduce the costs, in this paper, we

design and implement a smart camera system, called BubCam, which leverages on a fog computing
(FC)-assisted wall-powered depth camera and wireless cameras to enable the automated quality
inspection of the ink bags. The primary goal of BubCam is to accurately estimate the volume of
the air bubbles inside the manufactured ink bags without manual intervention. However, in our
application, the size of the air bubbles is small at millimeter-level. Our experiments in §8 show that
the existing bubble detection approaches using the conventional computer vision (CV)-based [26]
and the recent convolutional neural network (CNN)-based [11] object detection algorithms have
inferior performance in estimating the volume of these small bubbles. To achieve high accuracy,
BubCam employs a DL-based image segmentation model which extracts multiple regions of bubbles
in the images for the bubble volume estimation.
Due to the dynamic environment condition and complex settings of the production lines, the

design of BubCam also faces the following three additional challenges. First, in the production
lines, the ambient light often reflects on the surface of the ink bags. As a result, the air bubbles
may be blocked and invisible in the captured RGB images. Moreover, the location of the reflected
areas may change over time due to the dynamic lighting condition in the factories. Second, the
quality of the images can suffer from the motion blur effect caused by the movement of the ink
bag on the conveyor belt. Third, labeling images of the manufactured ink bags is labor-intensive
and time-consuming. Specifically, determining the ground-truth air bubble areas in the captured
images cannot be performed by normal persons and requires a collaboration with the experienced
technicians.
To address the first two challenges, we develop a late fusion scheme which combines the seg-

mentation results of multiple consecutive RGB images to generate the final result of the bubble
volume estimation. Fusion can help improve the estimation accuracy because different frames
may have different quality and reflected areas under variations of the light reflection and motion
blur conditions. To further obtain high accuracy under the dynamic lighting conditions, the depth
sensing information is also fused with the RGB images when the reflection areas are detected in the
RGB images. To solve the problem of labeling difficulty, we propose a knowledge-based labeling
approach which utilizes the prior knowledge of the production to facilitate the labeling process.
Multiple views of a scene are generally robust against the light reflection variation problem.

Thus, we further develop a multi-camera BubCam system which uses multiple wireless cameras to
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assist the main wall-powered camera. The wireless cameras are deployed to capture the inspected
ink bag from different view angles. These images are then fused with the images captured by the
main camera. Specifically, due to the low cost and easy installation of the wireless cameras, the
multi-camera BubCam can be deployed in an ad hoc fashion to achieve better accuracy, especially
under the dynamic light reflection condition.
However, the wireless cameras are often powered by batteries with finite capacities. Thus, it

is desirable to adapt their configuration to minimize the camera’s energy consumption while
maintaining the performance requirement in response to the variations of the presence of air
bubbles and the lighting condition. For instance, the wireless cameras should be only activated
when the bubble areas are blocked by light reflection in the images of the main camera. Furthermore,
the capturing frame rate of the wireless cameras should increase when the air bubbles appear in
their field of view. Otherwise, the frame rate should be kept minimum to save power.
To achieve the goal, we propose a novel configuration adaptation approach to obtain desired

accuracy with minimum energy consumption. Specifically, we formulate an adaptation problem
as a Markov decision process (MDP) which aims to configure the activation mode and image
frame rate of the wireless cameras. The objective of the formulated MDP is to satisfy the bubble
volume estimation accuracy while maximizing the system’s lifetime in response to variations
of the presence of the air bubbles and light reflection. The preliminary version of this work [5]
presented the design of a single agent deep reinforcement learning (DRL) approach to learn the
optimal configuration policy for the wireless cameras. In the factory, the manufacturing line is
often reconfigured four or five times per month to produce the ink bags with different sizes and
colors. The existing wireless cameras may need to be repositioned and/or additional cameras can
be deployed to maintain sufficient coverage and inspection accuracy. The DRL agent may need to
be retrained to learn a new configuration policy for the repositioned and new wireless cameras.
This paper also presents the extended multi-camera BubCam design which employs a multi-agent
DRL (MADRL) approach to reduce the retraining costs such as the required number of the training
data samples and the retraining latency.

We perform extensive evaluation via testbed experiments in both the controlled lab and factory
deployments. Specifically, we collect an image dataset to drive the design of the proposed deep
learning (DL)-based image processing pipeline and DRL-based configuration adaptation approach.
We compare BubCam with six baseline approaches which include the factories’ manual inspection,
three bubble detection and two configuration adaptation baseline approaches. The evaluation
results show that BubCam achieves accuracy improvement of about 34% and latency reduction of
up to 300x, compared with the factories’ manual inspection.

The contributions of this work can be summarized as follows:

• We design and implement BubCam which leverages the DL-based image segmentation and
fusion techniques to accurately estimate the volume of the air bubbles of the manufactured
ink bags in the HP’s production lines. BubCam aims to address challenges caused by combined
impacts of the motion blur and strong reflection conditions in the industrial environment.
Our design can be useful to the developments of other vision systems for the automated
quality inspection of the relevant products in the industrial processes.

• We formulate the camera configuration adaptation problem and propose the single and
multiple agent DRL-based approaches to learn the efficient configuration policy in the
industrial settings.

• We implement and deploy real-world testbeds in both a controlled system and the factories’
manufacturing lines to evaluate BubCam. Effectiveness of BubCam is compared with six
baseline approaches.
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Paper organization: §2 reviews related work. §3 describes background and approach overview. §4
overviews the design of BubCam. §5 presents the detailed design of the single-camera BubCam
system. §6 and §7 present the multi-camera BubCam system with the single-agent DRL-based and
MADRL-based configuration adaptation approaches, respectively. §8 presents the deployment and
evaluation results. §9 discusses the limitation and future work. §10 concludes the paper.

2 RELATEDWORK
In this section, we review the related works on industrial visual inspection, bubble detection and
multi-camera system.

■ Industrial visual inspection: Visual inspection is widely adopted to inspect the quality of
manufactured products in factories. For instance, the studies in [7] developed a visual sensing
system which aims to rectify millimeter-level edge deviation during production at the factory.
The developed system can help increase the material utilization rate and save manpower. In [17],
the authors designed the fog computing (FC)-assisted camera systems to detect defects of the tile
products in real time. The study in [20] designed a vision inspection system to replace manual
inspection for detecting the liquid level and segmenting the bubble area in the liquor distillation.
Moreover, the study in [27] developed an automated visual inspection system which employs the
CNN models (i.e., YOLOV5 and DeepLabV3Plus) to detect the surface defects of the molded pulp
products. Similarly, BubCam is a visual sensing system which aims to inspect the quality of the air
bubbles of the ink bags manufactured in the HP’s ink factories.

■ Bubble detection: Bubble detection is important in many industrial applications. The existing
studies [9, 11, 14, 26] mainly applied the object detection algorithms for the bubble detection,
which can be divided into the following two main categories. The first category consists of the
conventional CV-based object detection approaches [14, 26] which generally use the edge detection
algorithms to extract the air bubbles from the images. Then, the extracted areas are fit to the
geometry shapes (e.g., circles or ellipse) whose size is considered as the bubble volume. For instance,
the study in [26] adopted a hough circle detection algorithm to extract the bubble areas from
the image. Then, a concentric circular arrangement algorithm was used to determine the circles
that best fit to the extracted bubble areas. The second category consists of the DL-based object
detection approaches [9, 11]. For instance, the study in [11] developed a region-based CNN (RCNN)
model to detect the bounding boxes of the bubbles from the image. Then, a shape regression CNN
was adopted to transform the extracted boxes to circles or ellipse whose total number of pixels is
considered as the bubble volume. In [9], the authors proposed a generative adversarial network
(GAN) model to generate the augmented images for efficiently training the RCNN model with
a limited labeled images dataset. However, as shown by our experiments in §8, these existing
CV-based and DL-based object detection approaches have inferior performance in estimating the
volume of the small bubbles in the inspected ink bags in our application. Thus, we employ a
DL-based segmentation model [29] for the bubble volume estimation in BubCam.

■ Multi-camera system: Existing studies [4, 18, 21, 30] proposed the use of multiple cameras
for the product quality inspection in the production lines. For instance, the study in [4] developed
a multi-camera system to inspect defects on the stereo skeleton of the car. Specifically, multiple
cameras are deployed to cover different parts of the car for detecting the tiny defects in real
time. In [21], the authors designed a multi-camera system to achieve a highly accurate 3D profile
measurement. Moreover, the study in [30] proposed a multi-camera system to inspect the quality of
the product parts moving on the conveyor belt in the factories. The proposed multi-camera BubCam
uses the multiple wireless cameras to improve the bubble volume estimation accuracy under the
dynamic ambient light reflection conditions. Similar to [22, 30], we adapt the configuration for
the camera’s parameters to achieve the desired performance with minimum energy consumption
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Fig. 1. An illustration of factories’s ink bag manufacturing and manual inspection.

under the time-varying environment conditions. Furthermore, in [22], the author adapts the frame
rate of wireless cameras by measuring the similarity of local frames and frames from other wireless
cameras. Differently, in BubCam, we control the activation and adapt the frame rate of the wireless
camera base on the position of bubbles and reflection in themain camera. Furthermore, we formulate
the adaptation problem as an MDP problem and train a DRL model to control the wireless cameras.

The preliminary version of this work [5] presented the design of a single-agent DRL approach to
learn the optimal camera configuration policy. It does not consider the retraining costs of the DRL
agent during the production line conversion process. In this paper, we make the following new
contributions. First, we formulate a Markov game problem and present the design of a MADRL
approach which aims to reduce the training costs to learn the optimal configuration policy for the
repositioned and new wireless cameras during the conversion process. Second, we conduct new
experiments to compare the prior approaches including the single-agent DRL approach [5] and the
MADRL approach in this paper. The evaluation results show that the MADRL approach can achieve
the similar camera’s energy usage and inspection accuracy with the reduced retraining costs.

3 BACKGROUND, MOTIVATION & APPROACH
In this section, we present the background of the ink bag quality inspection at HP’s factories. Then,
we describe the design approach and challenges of BubCam.

3.1 Background and Motivation
As discussed in §1, the current protocol of the HP’s factories adopts a manual quality inspection
approach to estimate the volume of the air bubbles inside themanufactured ink bags. Fig. 1 illustrates
how the ink bags are inspected in the HP factories. Specifically, the empty ink bags with two plastic
layers are filled by the ink-fillingmachines. Then, the filled ink bags are moved through the conveyor
belt to the packaging process. However, the filling machines may inject the air bubbles into the
bags. The air bubbles with a sufficiently large size can reduce the printing quality of the industrial
printers which use the manufactured ink bags [8]. Thus, the quality inspection is performed to
ensure that the ink bags with a large bubble volume are not distributed to the customers. The
inspection results also provide information to determine the need for corrective actions in the
ink-filling process. To achieve the goal, during the production process, the technicians continuously
monitor and perform human eye-tracking to examine the ink bags moving on the conveyor belt.
The ink bags detected with the air bubbles are taken for a manual measurement procedure which
begins with removing the outer layer of the inspected ink bag for better visibility. Then, the air
bubbles are manually squeezed to a corner of the bag, which approximately forms an air cone as
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Fig. 2. Samples of captured RGB and deep images.

illustrated in Fig. 1 (b). A backlight is placed behind the ink bag to better visualize the boundary of
the formed air cone. Finally, a vernier caliper is used to measure the radius and height of the cone
for determining the volume of the air bubbles.

The above manual quality inspection approach has two main drawbacks as follows. First, it is a
destructive test because the outer layer of the inspected ink bags is removed for the better visibility
of the air bubbles. As such, all inspected ink bags are destructed even they do not have the large air
bubbles. Second, it has high latency. From the historical records, the manual inspection procedure
including the outer layer removal, bubble squeezing and air cone size measurement can take about
5 minutes to 10 minutes per ink bag. Thus, to avoid the destructive tests and increase the inspection
throughput, it is desirable to develop an automated inspection system that can reliably estimate
the air bubble volume of the ink bags with low latencies.

3.2 Design Approach and Challenges
In this work, we design and implement an automated visual quality inspection system, called
BubCam, to replace the factories’s manual inspection approach. The key design approach of BubCam
is to deploy a single wall-powered camera to continuously capture images of the manufactured
ink bags moving on the conveyor belt. The camera is deployed at a relatively far distance from the
conveyor belt such that a captured image can contain the entire ink bag. Meanwhile, the actual air
bubbles often have a size of millimeter-level. As a result, the air bubbles appear with an extremely
small size in the captured images. For instance, as shown in an sample in Fig. 2(a), an air bubble
has a size of around 1,200 pixels which only account for 1/768 of the entire 1-megapixel image.

It is nontrivial to accurately estimate the volume of such small bubbles in the captured images. A
possible approach to address this problem is to place the camera closer to the ink bags. However, in
the production lines, the manufactured ink bags can have three different sizes of 36.5cm × 31cm,
41.5cm × 37cm, and 42cm × 49cm. Multiple cameras are needed to capture the entire ink bags with
these large sizes at a short distance. Deploying multiple wall-powered cameras is undesirable in
the industrial settings, especially in the scheme of reconfigurable manufacturing system [16] that
can adjust the layout and configuration of the production lines in response to variations of the
regulatory requirements or market demands. Moreover, the use of multiple high-quality cameras
also increase the system cost. Thus, in BubCam, we use a single wall-powered camera.
Furthermore, due to the buoyancy of the ink and the curved bag surface, the air bubbles often

cluster into multiple groups on the bag’s internal surface. This observation suggests that the
air bubbles in the same group should be detected together. Thus, we develop a DL-based image
segmentation approach which extracts the air bubbles into multiple image regions for the bubble
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volume estimation. We also investigate the feasibility of the existing CV-based [26] and CNN-
based [11] object detection approaches for our bubble estimation problem. However, from our
experiments (cf. §8), these existing approaches have inferior performance, compared with BubCam.
The main reason is that these approaches aim to recognize the bubbles as individual objects. Thus,
they fail to accurately detect the small bubbles which are squeezed in multiple groups in the ink
bag. Moreover, the DL-based segmentation model generally requires less effort for image labeling
than the DL-based object detection approaches. Specifically, determining the ground-truth label of
the bubble regions is often easier than determining the ground-truth label of the individual bubbles.
Furthermore, due to the complex production settings and requirements, the design of BubCam

also faces the following two additional challenges. First, the bubble volume estimation accuracy
suffers from the ambient light reflection problem. Specifically, in the factories, the production
systems are often set up in an open space or an enclosed space covered by the transparent frames.
The ambient light can reflect on the surface of the ink bags on certain locations which may change
over time due to the motion of the ink bags on the conveyor belt and the surrounding industrial
objects and humans. As a result, the air bubbles can be blocked by the light reflection on the
captured RGB images as illustrated in Fig. 2(a). The blocked bubbles cannot be detected based on
the optical visual sensing information only. Second, as the ink bags move on the conveyor belt
during the inspection process, the quality of captured images can be low due to the motion blur
effect. The low-quality images result in low accuracy in detecting small air bubbles.
To address the above challenges, BubCam fuses multiple consecutive RGB images which may

have different quality and reflected areas under the dynamic light reflection and motion blur
conditions. Furthermore, we prototype BubCam by a depth camera which can provide both the
RGB and depth images. The hardware components of BubCam will be described in §4. Figs. 2 (a)
and (b) show the RGB and depth images captured by the camera under the light reflection. As
shown in Fig. 2, the air bubble areas which are blocked in the RGB frame is still visible in the depth
image. Thus, to achieve better accuracy, we fuse the RGB and depth images when a reflected area is
detected on the RGB image. However, as shown in Figs. 2 (b), the depth image also have reflection
area which is caused by the infrared light emitted from itself. Although the reflection area is small
compared with the reflection area in RGB images, the bubbles blocked in both RGB and depth
images cannot be recognized.

We further develop a multi-camera BubCam system which aims to improve accuracy, especially
under the dynamic lighting condition. Themulti-camera BubCam additionally usesmultiple wireless
cameras to capture the inspected ink bag from different view angles. These images are fused with
the images captured by the main camera to generate the final bubble volume estimation result.
Specifically, due to the low cost and easy installation of the wireless cameras, the multi-camera
BubCam can be deployed in an ad hoc fashion for accuracy improvement, especially when the
strong light reflection is observed. Moreover, we formulate a camera configuration adaptation
problem and propose a single-agent DRL-based learning approach to save the camera’s battery
power.

In addition, a production line is often reconfigured four or five times per month to manufacture
ink bags in different sizes and filled with inks in different colors. Specifically, the injection speed of
the ink filling machine and the movement speed of the conveyor belt are adjusted to accommodate
the changes in ink bag size and ink color. The positions of the existing wireless cameras may need
to be adjusted accordingly. The learned configuration policy of the DRL agent which is trained with
the wireless cameras located at the previous positions might not maintain high performance for the
configuration of the cameras at the new positions. Moreover, additional cameras may be deployed
to achieve sufficient coverage and accuracy for inspecting the ink bags with larger sizes. Therefore,
the DRL agent needs to be retrained to learn the new configuration policy for the repositioned and
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Fig. 3. BubCam system overview. A main wall-powered camera is supported by multiple wireless cameras.

new cameras. In general, the DRL agent retraining process incurs high training costs in terms of
the number of required data samples and training latency. To address this issue, we further develop
a MADRL approach to train multiple DRL agents, each of which is used for the configuration
adaptation of a separate wireless camera. During the production line reconfiguration process, we
only retrain the agent for the camera with the position adjustment distance higher than a threshold.
New DRL agents can be also trained for newly added cameras.
Lastly, data labeling is a challenging task for developing BubCam. Specifically, labeling the

images of the manufactured ink bags cannot be performed by normal persons based on their
instinct and/or basic knowledge. Labeling process is time-consuming and requires a collaboration
with the experienced technicians. Thus, it takes a lot of efforts to create a big labeled image dataset
for training and testing the BubCam’s DL-based image segmentation model. To address this issue,
we design the knowledge-based labeling approach which utilizes the prior knowledge about the
motion of the ink bags to facilitate the labeling process.

4 SYSTEM OVERVIEW AND HARDWARE
In this section, we overview the design and hardware of BubCam as illustrated in Fig. 3.

4.1 Overview of Single-Camera System
For the wall-powered camera, we choose L515 [15], an off-the-shelf LiDAR camera which can
provide both RGB and depth images with a resolution of 1920 × 1080 pixels and 1024 × 768,
respectively, at a frame rate up to 30 frames per second (FPS). Moreover, it has a sensing range of
from 0.25 meters to 9 meters. The L515 is connected to a fog node prototyped by a Jetson AGX
Xavier unit that is equipped with a 2.03GHz CPU and an embedded 1.2GHz GPU. The images are
processed at the fog node for the bubble volume estimation. Specifically, the image processing
pipeline of the single-camera BubCam consists of the following three main steps.

■ Image preprocessing: As illustrated in Fig. 3, the main camera L515 captures the ink bags
moving through its view on the conveyor belt. Per image capturing, the L515 provides both RGB and
depth image frames. Upon receiving the captured consecutive RGB frames, the fog node calculates
the pixel-wise absolute difference between them and then selects the key frames whose pixel
difference is higher than a certain threshold. Moreover, a color filtering algorithm is implemented
to detect the ink bag and light reflection areas in each key RGB frame. When any reflection area is
detected, the corresponding depth frame is also selected. The selected RGB and depth images are
fed to the segmentation module.
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■ DL-based image segmentation:We adopt a deep CNN-based segmentation model, called
pyramid scene parsing network (PSPNet) [29] to extract the bubble areas from the images. However,
due to the nature of a deep CNN, training the PSPNet often requires a large labeled image dataset
to achieve satisfactory inference accuracy. As discussed earlier, determining the ground truth of
the bubble areas is nontrivial. Thus, we develop a knowledge-based image labeling approach which
uses the prior knowledge about the motion speed of the ink bags to facilitate the labeling process.
We also design a new loss function which utilizes relationship between the bubble volume in the
consecutive frames to improve the training accuracy.

■ Result fusion: The PSPNet takes an RGB/depth image as input to predict a pixel score map
of the image. For the RGB key frame with reflected areas, its score is fused with the score of its
corresponding depth frame to generate the final score map of the frame. Then, we consider the
total number of pixels with a score greater than a certain threshold as the bubble volume of the
frame. Finally, the bubble volumes of all frames of the same ink bag are aggregated to yield the
bubble volume of the inspected ink bag.

The detailed design of the above three steps is described in §5.

4.2 Overview of Multi-Camera System
For wireless camera, we choose the lower-power OpenMV H7 Plus that includes an OV5640 module
providing an image resolution up to 2592 × 1944 (5 Megapixels). The OpenMV is equipped with
an ARM Cortex M7 480 MHz processor, a 32MBs SDRAM and a 1MB SRAM which allow us to
implement simple algorithms to preprocess the images locally. Moreover, it is capable of adjusting
its frame rate from 0 to 30 FPS.

■ Local preprocessing: Due to the movement of the ink bags, the captured images may only
contain the conveyor belt. Thus, to reduce the image processing and communication overheard,
the wireless camera runs a color filtering algorithm to detect the presence of the ink bag on its
images. Then, it only sends the images with the ink bag to the fog node.

■DRL-based configuration adaptation:At the fog node, we implement a DRL-based controller
which aims to adapt the configuration for thewireless cameras’s parameters in response to variations
of the lighting condition and bubble presence. Specifically, the DRL controller periodically observers
a system state including the bubble and light reflection presence in the image of the main camera and
the residual battery energy levels of the wireless cameras. Then, it selects an action for configuring
the activation mode and frame rate of the wireless cameras. The main objective is to maintain
the desired accuracy of the bubble volume estimation while maximizing the system lifetime. In §6
and §7, we formally formulate the configuration adaptation problems and present the proposed
single-agent and multi-agent DRL-based solutions.

5 DESIGN OF SINGLE-CAMERA BUBCAM
In this section, we describe details of the image preprocessing, segmentation and fusion modules of
the single-camera BubCam.

5.1 Image Preprocessing
5.1.1 Key Frame Selection. The captured consecutive RGB image frames may have similar contents.
To reduce the image processing overheard, BubCam selects the key frames only for the image
segmentation and fusion. Specifically, among the captured frame, the first frame is always selected
as a key frame. Then, the pixel-wise absolute difference between the first and second frames is
calculated to generate a pixel difference map. The difference map is converted to a gray-scale image.
Finally, a median blur algorithm is used to filter out the noises from the gray-scale image.
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Fig. 4. Knowledge-based labeling approach of BubCam.

A pixel is considered as a changed pixel from the first frame to the second frame if the difference
of its value in the gray-scale image is greater than a threshold. The value of this threshold is
chosen empirically under which BubCam can achieve a good balance between the image processing
overhead and the inspection accuracy. A higher threshold value reduces the processing overhead
but increases the miss detection rate of the ink bags. Specifically, if an image with the conveyor belt
only is selected as a key frame, the first image with the ink bag among incoming images should be
selected as the next key frame. Thus, the threshold value is set to be 80 which is the lowest pixel
difference value between the image with the conveyor belt and the image with the ink bag.
The ratio of the number of changed pixels to the total number of frame’s pixels is used to

represent the difference degree between the contents of the two frames. Then, the second frame is
selected as a key frame if its difference degree is higher than 20%. Given a new frame, the above
processing pipeline is repeated to determine whether it should be selected as a key frame based on
its difference degree, compared with the latest selected key frame.

5.1.2 Ink Bag and Reflection Detection. BubCam aims to fuse the key frames of the same ink bag to
generate the final volume estimation of the bag. Thus, the third preprocessing step is to determine
groups of the key frames which contain the same ink bag. Specifically, in the production lines,
the ink bags are moving on the conveyor belt one by one with a certain distance. As a result, the
groups of the same bag images are interleaved with the images with the conveyor belt only. Thus,
we use presence of the conveyor belt images to determine the images of the same group.

As the color of the ink bags is different from that of the conveyor belt, we implement a color
filtering algorithm to detect the presence of the ink bag in the images. Specifically, the algorithm
converts the RGB image to the HSV (hue, saturation, value) color map. A pixel is considered
belonging to the ink bag area if its H, S, V values are within specific ranges which are determined
based on the ink bag color. For the yellow ink bag we use the H, S, V value ranges of [20, 40],
[40, 255], and [40, 255], respectively. The image is considered as an image with no ink bag if yellow
pixel is detected.
We also use the above algorithm to detect the presence of reflection areas on the ink bag to

determine the need of depth fusion. Specifically, the color of the reflection areas is white. Thus, we
use the H, S, V value ranges of [222, 256], [0, 256], and [0, 256], respectively, to detect pixels of the
reflection areas.

5.2 Image Segmentation
5.2.1 Segmentation Model. BubCam adopts the PSPNet [29], a state-of-the-art deep segmentation
model which uses a ResNet50 [12] as the backbone CNN model to extract the feature map of the
input image. Then, the feature map is forwarded into a pyramid pooling module in which the
features are fused to generate a feature representation. Finally, the representation is fed into a
convolutional layer to yield a predicted score map.

ACM Trans. Cyber-Phys. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.



A Collaborative Visual Sensing System for Precise Quality Inspection at Manufacturing Lines 1:11

5.2.2 Knowledge-based Labeling. To label the images for training the PSPNet, we developed a
manual labeling approach which requires a collocation with technicians in the production lines.
This manual labeling approach is labor intensive and time-consuming. More details of this approach
will be described in §8.1.2. Thus, we design a knowledge-based labeling approach which utilizes the
prior knowledge about the motion of the ink bags to label the images based on the ground-truth
labels obtained by the manual labeling. Fig. 4 illustrates our knowledge-based labeling approach.
Specifically, in the production lines, the motion speed of the ink bags is known due to the

constant rotation speed of the conveyor belt. We consider the consecutive images of the same
ink bag that have the same ink bag area size but a different location. First, we adopt the manual
labeling to generate the ground-truth label (i.e., the pixel score map) of a frame (e.g., frame 𝑖 in
Fig. 4) among these frames. Our proposed labeling approach aims to generate a pseudo label of the
unlabeled frame 𝑗 based on the ground-label of frame 𝑖 . First, we use the color filtering algorithm as
described in §5.1.2 to detect bubble pixels in frames 𝑖 and 𝑗 . Then, a connected component analysis
algorithm [1] is used to extract the ink bag area as a rectangle bounding box from the frames.
Due to the constant motion speed of the ink bag, the relative distance between locations of two
extracted boxes in frames 𝑖 and 𝑗 can be determined. The pseudo label of frame 𝑗 is generated based
on the calculated distance and the ground-truth label of frame 𝑖 .

5.2.3 Model Training. We train the PSPNet with a loss function, denoted by 𝐿 which is defined as:
𝐿 = 𝐿𝑐𝑒 + 𝐿𝑠 , where 𝐿𝑐𝑒 is the pixel-wise cross-entropy loss function of the PSPNet, and 𝐿𝑠 is a new
loss function that utilizes the prior system knowledge for improving the accuracy. Specifically, the
consecutive images of the same ink bag should have consistent volume of the air bubbles. Thus,
the 𝐿𝑠 is designed to minimize the difference between the predicted score maps of these frames. Let
𝛽 denote the number of image training groups each of which consists of the consecutive images of
the same ink bag with the same bubble volume in the training dataset. If we define Ω𝑖 = 1, . . . , |Ω𝑖 |
as the set of images in group 𝑖 , then 𝐿𝑠 =

∑𝛽

𝑖=1
∑ |Ω𝑖 |

𝑗=1
∑ |Ω𝑖 |

𝑘=1 |𝑠 𝑗 −𝑠𝑘 |, where 𝑠 𝑗 and 𝑠𝑘 are the predicted
total score of images 𝑗 and 𝑘 in group 𝑖 , respectively.

5.3 Result Fusion
The PSPNet predicts a pixel score map for each input key RGB/depth frame. First, the score map of
the key RGB frame with the light reflection is fused with the score map of its corresponding depth
frame. The L515 of BubCam provides the RGB and depth images with a resolution of 1920 × 1080
pixels and 1024 × 768 pixels, respectively. Fusing the entire low-quality depth frame with the
high-quality RGB frame can reduce the image quality. Moreover, the purpose of the depth fusion
is to achieve better accuracy in detecting the bubbles blocked by the reflection in the RGB image.
Thus, we only fuse the score of RGB pixels in the reflected areas with those in the depth image.
Specifically, the average fusion is adopted to generate the final score map of the reflected areas in
the RGB image. Then, the score map of the fused frame is used to calculate the bubble volume as
the total number of pixels with a score higher than a threshold value which is determined based on
the ink bag color. For instance, we use a threshold of 0.5 for the yellow ink bags. Finally, the bubble
volume of an ink bag is obtained by averaging the volume estimation results of all its key frames.

6 DESIGN OF MULTI-CAMERA BUBCAM WITH SINGLE-AGENT DRL (SADRL)-BASED
CONFIGURATION ADAPTATION

In this section, we first present the design of the multi-camera BubCam. Then, we formulate a
configuration adaptation problem and propose a SADRL-based solution.
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(a) Image captured by main camera. (b) Image captured by wireless camera.

Fig. 5. Samples of images with a QR code.
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Fig. 6. The memory size and mIoU of PSPNet model with different CNN backbones.

6.1 Image Preprocessing
Image Processing Pipeline: The images captured by the wireless cameras may contain the
conveyor belt only. Thus, to save the camera’s battery power, the wireless camera should only send
the ink bag images to the fog node. To achieve this goal, we use the color filtering algorithm in
§5.1.2 to detect the presence of the ink bag in the captured images. The main and wireless cameras
have different view angles. Thus, we adopt a homography projection algorithm to associate the
images of the wireless cameras with the images of the main camera. Let 𝐻𝑖 denote the 3 × 3
homography matrix of the wireless camera 𝑖 . The 𝑃𝑖 = [𝑥𝑖 , 𝑦𝑖 , 1] denotes the coordinate vector
of a pixel 𝑝𝑖 in the image of the wireless camera 𝑖 . Then, the pixel 𝑞𝑚 with a coordinate vector,
denoted by𝑄𝑚 = [𝑥𝑚, 𝑦𝑚, 1], in the image of the main camera is associated with pixel 𝑝𝑖 as follows:
𝑄𝑚 = 𝐻𝑖 × 𝑃𝑖 . The matrix 𝐻𝑖 for the wireless camera 𝑖 is predetermined during the deployment
phase. Specifically, we paste a QR code on a surface area of an ink bag. Fig. 5 shows two samples of
the ink bag images with the QR code captured by the main and wireless cameras 𝑖 from different
view angles. Then, the QR code areas in these two images are extracted and associated to determine
the 𝐻𝑖 .

In the above image processing pipeline, the wireless cameras send their captured images to the
main camera which employs the PSPNet-based framework to segment out the air bubble regions.
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(a) Reflection appearance. (b) Bubble appearance.
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Fig. 7. Compliance with Markov assumption.

The wireless camera’s communication costs can be reduced if the PSPNet-based image segmentation
framework can be implemented in the wireless camera. Thus, we investigate performance of the
PSPNet implementation in the 1MB SRAM memory of the wireless camera (i.e., OpenMV). The
wireless camera also has a memory SDRAM of 32MBs, but this memory can be used for storing the
captured images only. In the main camera, the PSPNet with a CNN backbone of ResNet50 requires
a memory size of 187.5MB. Thus, we use a lightweight CNN backbone, called MobileNet V2 [23] for
the PSPNet in the wireless camera. However, the PSPNet with the original MobileNet still requires a
memory size of 28.3MB. Therefore, we adopt an existing CNN compression approach [6] to reduce
the memory size of MobileNet. As a result, the memory size of the PSPNet with the compressed
MobileNet has a memory of 0.2MB. Fig. 6(a) presents the memory size of the PSPNet with different
CNN backbones. We train these PSPNet models with a training dataset consisting of 800 images.
Fig. 6(b) shows the mean intersection over union (mIoU) of the evaluated PSPNet models over 200
testing images. The mIoU is the average of ratios of the overlap area to the union area between the
ground-truth and predicted bubble areas in the testing images. From Fig. 6, we can see that the
PSPNet with the compressed MobileNet can be fit to the memory of the wireless camera. However,
it can achieve a low mIoU value of 24.1% (i.e., image segmentation accuracy) only. Thus, we do not
implement the PSPNet-based image segmentation framework in the wireless cameras.

6.2 SADRL-based Configuration Adaptation
To increase the lifetime of its battery, a wireless camera should be activated only when the air
bubbles are blocked by the light reflection in the images captured by the main camera. Moreover,
the wireless camera should increase its frame rate when the air bubbles appear in its captured
images. Otherwise, it can keep a minimum frame rate. To achieve the goal, we develop a DRL-based
solution to adapt the configuration for the activation mode and frame rate of the wireless cameras
in responses to the two exogenous stochastic processes, i.e., the time-varying presence of the air
bubbles and light reflection.

6.2.1 Assessment of Markov Property. Markov assumption (MA) is a basic property of the systems
where RL is applicable. Thus, we conduct experiments to assess if the above two stochastic processes
satisfy the MA, i.e., P[𝑋𝑡 |𝑋𝑡−1] = P[𝑋𝑡 |𝑋𝑡−1, . . . , 𝑋𝑡−𝑀 ] with 𝑀 ≥ 0, where the 𝑋𝑡 represents the
reflection/bubble presence at time 𝑡 . Specifically, we consider the probability difference, denoted by
Δ𝑃 = P[𝑋𝑘 |𝑋𝑘−1] − P[𝑋𝑘 |𝑋𝑘−1, . . . , 𝑋𝑘−𝑀 ], as an MA compliance metric. A lower absolute value of
Δ𝑃 indicates better compliance. Fig. 7 shows the distribution of Δ𝑃 with𝑀 = 2 for the reflection and
bubble presence in a dataset consisting of 1,000 consecutive images that we captured in the factory.
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From Fig. 7, we can see that these two stochastic processes have good compliance with the MA
because their values of Δ𝑃 concentrate at zero. Thus, we formulate the configuration adaptation as
an MDP problem and propose a DRL-based solution to learn the optimal adaptation policy.

6.2.2 MDP Formulation. Time is divided into identical intervals of 𝜏 seconds, which is referred
to as adaptation period. We divide the last image captured by the main camera into a number of
equal sub-areas, denoted by Γ. At the beginning of every adaptation period, called a time step,
the presence of the air bubbles and light reflection on these subareas is observed to configure the
activation mode and frame rate for the wireless cameras. Let 𝑁 denote the number of wireless
cameras in the systems.
System state: The system state, denoted by 𝑠 , is a 3-tuple: 𝑠 = (𝐵, 𝐿, 𝐸), where the 𝐵 =

[𝑏1, . . . , 𝑏Γ |𝑏𝑖 ∈ {0, 1}] and 𝐿 = [𝑙1, . . . , 𝑙Γ |𝑙𝑖 ∈ {0, 1}] represent the presence of the air bubbles and
light reflection in the Γ image sub-areas, respectively, while the 𝐸 = [𝑒𝑖 , . . . , 𝑒𝑁 ] is a residual battery
energy level vector of 𝑁 cameras.
Configuration action: The configuration action, denoted by 𝑎, is a vector 𝑎 = [𝛼1, . . . , 𝛼𝑁 , 𝑓 ],

where 𝛼𝑖 ∈ {0, 1} is the activation mode of the camera 𝑖 and the 𝑓 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 ] is the frame rate of
all wireless cameras. If the 𝛼𝑖 is equal to 1, the camera 𝑖 is activated. Otherwise, it is set to the sleep
mode. Moreover, the 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 denote the minimum and maximum frame rates, respectively.
Reward function: Let 𝑒min denote the minimum of the remaining energy levels of 𝑁 wireless

cameras at the end of the 𝑘 th adaptation period and 𝜙k denotes the accuracy of the bubble volume
estimation of the images captured during the 𝑘 th period. Then, the immediate reward, denoted by
𝑟 (𝑠, 𝑎), is defined as

𝑟 (𝑠, 𝑎) = 𝜆1N(𝑒min) + 𝜆2N(min{𝜙𝑘 − 𝜙req, 0}), (1)

where 𝜆1 and 𝜆2 are weights, 𝜙req is the required accuracy, and N = max(𝑥, 0)/𝑥𝑚𝑎𝑥 represents a
normalization process.

The objective of the above MDP problem is to find an optimal adaptation policy that determines
action 𝑎 based on state 𝑠 to maximize the expected reward over a long run, i.e., E[𝑟 (𝑠, 𝑎)]. As shown
in Eq. (1), the reward 𝑟 (𝑠, 𝑎) is defined based on the weighted sum of the minimum remaining
energy and the degree of violating of the accuracy requirement. Thus, the optimal policy is to
satisfy the accuracy requirement while maximizing the system lifetime which is defined as the
operational time of the system until the first wireless camera runs out of energy.

6.2.3 Offline Training. We adopt the learning framework of a DRL algorithm, called the Proximal
Policy Optimization (PPO) to learn the optimal configuration adaptation policy, because PPO is
a strong and simple baseline method in DRL algorithms. Typically, the DRL agent interacts with
the system to learn the optimal policy. However, for the formulated problem, training the DRL
agent at run time faces the following two challenges. First, training needs long times to converge,
which may lead to large energy consumption of the wireless cameras. Second, it is cumbersome to
measure camera’s power and the bubble volume accuracy, without the ground-truth labels during
the online learning phase. To address these two challenges, we adopt an offline training approach,
in which we collect an image dataset and measure the camera’s power traces during the collection.
The collected images are processed to determine the presence of the light reflection and the air
bubbles. Moreover, we use the measured power trace to model the camera’s power consumed to
capture an image. Then, we use the image dataset and the built power model to drive the offline
training of the DRL agent. Finally, the trained DRL agent is used to adapt the configuration of the
wireless cameras for the online bubble volume estimation in the production lines.
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7 MULTI-AGENT DRL (MADRL)-BASED CONFIGURATION ADAPTATION
In this section, we formulate the multi-camera configuration adaptation problem as a Markov game,
and present the detailed design of our MADRL solution.

7.1 Markov Game
The Markov game (MG) [10] is an extension of the MDP and can be represented by the 4-tuple
(N, S,A,R), where N = {1, . . . , 𝑁 } denote the set of 𝑁 agents for adapting the configurations of
𝑁 wireless cameras, 𝑆 = {𝑠1, . . . , 𝑠𝑁 } is the set of states observed by 𝑁 agents, 𝐴 = {𝑎1, . . . , 𝑎𝑁 }
is the set of actions of 𝑁 agents, and 𝑅 = {𝑟 1, . . . , 𝑟𝑁 } is the set of reward functions of 𝑁 agents.
Specifically, the 𝑁 agents have the same system state 𝑠1 = . . . = 𝑠𝑁 = (𝐵, 𝐿, 𝐸), where the 𝐵, 𝐿,
and 𝐸 represent the presence of the air bubbles and light reflection in the Γ image sub-areas and
residual battery energy levels of 𝑁 cameras, respectively. The agent’s action is a vector 𝑎𝑖 = [𝛼𝑖 , 𝑓𝑖 ],
where 𝛼𝑖 ∈ {0, 1} and 𝑓𝑖 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 ] are the activation mode and frame rate of the camera 𝑖 ,
respectively. Moreover, the formulated MG is a fully cooperative game in which the 𝑁 agents have
the same reward 𝑟 1 = . . . = 𝑟𝑁 = 𝑟 , where the 𝑟 is reward function defined in Eq. (1).

7.2 MADRL Solution
Existing studies [10] have proposed various DRL schemes to train and find the optimal solution
of a multi-agent MG system, which can be divided into the two main categories: the centralized
and distributed training schemes. In this paper, we adopt a centralized DRL training scheme, called
multi-agent proximal policy optimization (MAPPO) [28] to learn the optimal actions for 𝑁 agents
in our formulated MG. The centralized training simplifies the training process by learning only a
centralized critic network and addresses the non-stationary of multiple agents learning. Specifically,
the MAPPO algorithm trains a critic network, denoted by 𝑉 (𝑠 ;𝜙), and 𝑁 policy networks, denoted
by 𝜋 (𝑠;𝜃𝑖 ) (1 ≤ 𝑖 ≤ 𝑁 ). The policy networks decide which configuration actions that the wireless
cameras should take to maximize their expected rewards. Meanwhile, the critic network evaluates
the taken actions by computing the value functions. These networks interact with each other to
learn the optimal configuration policy during the training phase. Algorithm 1 presents the detailed
training procedure of the MAPPO algorithm.
Specifically, the training phase lasts for𝐺 epochs, each of which consists of 𝑇 time steps. The

first training begins with initializing the critic and policy networks with random weights of 𝜙
and 𝜃𝑖 (1 ≤ 𝑖 ≤ 𝑁 ). Then, a training epoch starts with initial states of 𝑁 agents which are chosen
randomly from the training data. At the beginning of the 𝑡 th time step, the actions 𝑎𝑡 = [𝑎1𝑡 , ..., 𝑎𝑁𝑡 ]
of 𝑁 agents are selected for state 𝑠𝑡 using the current policy networks. The immediate reward 𝑟𝑡 is
obtained as a feedback signal obtained after executing the selected actions in 𝑎𝑡 . The transition
tuple [𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1] is stored in the trajectory pool, denoted by 𝜁 . The next step is to compute the
advantage function values, denoted by 𝐴𝑡 (1 ≤ 𝑡 ≤ 𝑇 ), of 𝑇 transition samples stored in the pool
𝜁 . At the end of the 𝑔th training epoch, a random mini-batch of 𝐻 samples {(𝑠ℎ, 𝑎ℎ, 𝑟ℎ, 𝑠ℎ+1)}ℎ=𝐻ℎ=1
is sampled from the pool 𝜁 to update the critic and policy networks, as presented in lines 20-26
of Algorithm 1. In the first training process, all 𝑁 policy networks are updated. Otherwise, the
retraining process only retrains the agents for the wireless cameras with the position adjustment
distance higher than a distance threshold. §7.3 will present how to determine the cameras with the
position adjustment for retraining. Moreover, the MAPPO algorithm uses the clipped surrogate
objective function, denoted 𝐿𝐶𝐿𝐼𝑃 (𝜃𝑖 ), to update the policy network 𝜋 (𝑠 ;𝜃𝑖 ), as presented in line 25
of Algorithm 1. The clipped objective function helps ensure that the difference between the old
policy and new policy is not too large, which is effective in trust region policy optimization [24].
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Algorithm 1:Multi-agent proximal policy optimization (MAPPO) training framework.
Input: 𝐺 : number of training epoches; 𝑇 : number of steps in each epoch; 𝐻 : mini-batch size;

and 𝜖 : clipping parameter; 𝛾 : discount factor.
1 N = {1, . . . , 𝑁 }: set of agents for 𝑁 wireless cameras;
2 if First Training then
3 Initialize the 𝑁 policy networks 𝜋 (𝑠;𝜃1), . . . , 𝜋 (𝑠;𝜃𝑁 ) with random weights;
4 Initialize the critic network 𝑉 (𝑠;𝜙) with random weights;
5 end if
6 for 𝑔 = 1 to 𝐺 do
7 Sample initial states for 𝑁 agents;
8 Initialize the trajectory pool 𝜁 = [];
9 for 𝑡 = 1 to 𝑇 do
10 for 𝑖 = 1 to 𝑁 do
11 Sample action 𝑎𝑖𝑡 ∼ 𝜋 (𝑠𝑡 ;𝜃𝑖 ) using the current policy;
12 end for
13 Execute the joint action 𝑎𝑡 = [𝑎1𝑡 , ..., 𝑎𝑁𝑡 ];
14 Observe next states 𝑠𝑡+1 and reward 𝑟𝑡 ;
15 Add [𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1] to the pool 𝜁 ;
16 end for
17 for 𝑡 = 1 to 𝑇 do
18 Compute the advantage function value:

𝐴𝑡 = −𝑉 (𝑠𝑡 , 𝜙) + 𝑟𝑡 + 𝛾𝑟𝑡+1 + ... + 𝛾𝑇−𝑡+1𝑟𝑇−1 + 𝛾𝑇−𝑡𝑉 (𝑠𝑇 ;𝜙);
19 end for
20 Sample a mini-batch of {𝑠ℎ , 𝑎ℎ , 𝑟ℎ , 𝑠ℎ+1}𝐻ℎ=1 with 𝐻 samples;
21 Update the critic network 𝑉 (𝑠;𝜙) using the loss function:

𝐿(𝜙) = 1
𝐻

𝐻∑︁
ℎ=1

(−𝑉 (𝑠ℎ ;𝜙) + 𝑟ℎ + 𝛾𝑟ℎ+1 + ... + 𝛾𝑇−ℎ𝑟𝑇 )2

if Retraining then
22 N = set of agents for the wireless cameras with the position adjustment distance

higher than a distance threshold;
23 end if
24 for 𝑖 = 1 to |N| do
25 Update the policy network 𝜋 (𝑠;𝜃𝑖 ) using the loss function:

𝐿𝐶𝐿𝐼𝑃 (𝜃𝑖 ) =
1
𝐻

𝐻∑︁
ℎ=1

Êℎ

[
min

(
𝜋 (𝑠ℎ ;𝜃𝑖 )
𝜋old (𝑠ℎ ;𝜃𝑖 )

𝐴ℎ, clip
(
𝜋 (𝑠ℎ ;𝜃𝑖 )
𝜋old (𝑠ℎ ;𝜃𝑖 )

, 1 − 𝜖, 1 + 𝜖

)
𝐴ℎ

)]
where 𝜋old (𝑠ℎ ;𝜃𝑖 ) is the old policy network before the update;

26 end for
27 end for

Output: Optimal configuration policies of 𝑁 agents: 𝜋 (𝑠, 𝜃1), . . . , 𝜋 (𝑠, 𝜃𝑁 ).
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Fig. 8. mIoU loss due to the position adjustments.

7.3 MADRL Retraining
7.3.1 Impacts of Camera’s Position Changes on Performance of Trained DRL Agents. Define the
6-degree-of-freedom (6DoF) pose/position of the camera 𝑖 as 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜔𝑖 , 𝛾𝑖 , 𝜑𝑖 ), where the
𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜔𝑖 , 𝛾𝑖 , and 𝜑𝑖 denote the x-coordinate/surge, y-coordinate/sway, z-coordinate/heave, roll,
pitch, and yaw components of the 6DoF pose 𝑃𝑖 , respectively. We conduct experiments to investigate
impacts of the wireless camera position changes on the end-to-end bubble inspection accuracy.
Specifically, we train both the single-agent and multi-agent DRL systems to learn the optimal
configuration policies for 𝑁 = 2 wireless cameras located at certain two DoF positions. The detailed
settings of the DRL agents and training processes will be presented in §8.3. Then, we move one
wireless camera from its original position along the x-axis direction to three new positions with a
distance step size of 1cm. We also move the camera to three more new positions whose roll angle
changes are 5°, 10°, and 15°, respectively. Then, we measure the inspection accuracy loss when we
apply the configuration policies learned with the original positions to adapt the parameters of the
camera at the new positions. We use the mIoU as the inspection accuracy metric.

Fig. 8 shows the mIoU loss of the SADRL and MADRL approaches under various changes in the
camera’s distance and view angle. Each mIoU loss point is the mIoU reduction due to the change of
the camera position from the original position to a new position over 100 testing ink bag images.
From Fig. 8, we can see that the mIoU losses of both the DRL and MARL approaches increase with
the distance and view angle difference between the old and new positions of the camera. Moreover,
the mIoU loss is less than 1% when the distance and view angle difference are less than 1.8cm and
3°, respectively. From these results, the DRL agents need to be retrained to maintain high inspection
accuracy when the camera position change exceeds a certain threshold.

7.3.2 Retraining Process. We define 𝑃old = {𝑃𝑖 |𝑖 = 1, . . . , 𝑁 } and 𝑃new = {𝑃 𝑗 | 𝑗 = 1, . . . , 𝑁 } as the
sets of the old and new positions of 𝑁 wireless cameras. Let 𝑐dist𝑖 𝑗 and 𝑐angle

𝑖 𝑗
denote the distance and

view angle correlations between 𝑃𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , 𝜔𝑖 , 𝛾𝑖 , 𝜑𝑖 ) ∈ 𝑃old and 𝑃 𝑗 = (𝑥 𝑗 , 𝑦 𝑗 , 𝑧 𝑗 , 𝜔 𝑗 , 𝛾 𝑗 , 𝜑 𝑗 ) ∈
𝑃new. They are calculated as{

𝑐dist𝑖 𝑗 = 1 − N(|𝑥𝑖 − 𝑥 𝑗 | + |𝑦𝑖 − 𝑦 𝑗 | + |𝑧𝑖 − 𝑧 𝑗 |),
𝑐
angle
𝑖 𝑗

= 1 − N(|𝜔𝑖 − 𝜔 𝑗 | + |𝛾𝑖 − 𝛾 𝑗 | + |𝜑𝑖 − 𝜑 𝑗 |),
(2)

where N = max(𝑥, 0)/𝑥𝑚𝑎𝑥 represents normalization process which normalizes its input 𝑥 to an
output value in a range of [0, 1]. In the proposed MADRL approach, we only retrain the DRL
agent of the camera whose distance and view angle correlations between its old and new position
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Fig. 9. Testbed at lab and factory trials.

are higher than certain thresholds, denoted by 𝑐distth and 𝑐angleth , respectively. Differently, with the
SADRL approach, we may need to retrain the agent to learn the new configuration policy for all
wireless cameras even only one camera is moved to the new position. Due to the use of the offline
training approach, the retraining process involves the labeling process of the images captured by
the cameras at the new positions. Thus, the MADRL can help reduce the training cost, compared
with the SADRL approach. Moreover, the MADRL retraining process also follows the procedure in
Algorithm 1. However, in the end of each training epoch 1 ≤ 𝑔 ≤ 𝐺 , we do not need to update the
policy networks of the cameras whose distance and view angle correlations are less than 𝑐distth and
𝑐
angle
th , respectively.

8 TRIALS AND EVALUATION
In this section, we present the deployments and evaluation of our proposed BubCam systems at lab
and factory environments.

8.1 Testbed and Trials
8.1.1 Lab Testbed. We deploy a conveyor belt sized 1.5𝑚×0.25𝑚×0.7𝑚 as illustrated in Fig. 9(a) to
simulate the production line in a lab environment. Specifically, we manually inject different volumes
of air bubbles into the ink bags. Then, we attach the cameras and fog nodes to a 3D-printed frame
holder to capture images of the ink bags moving on the conveyor belt. Specifically, the deployed
conveyor belt is capable of adjusting its rotation speed, which allows us to evaluate the impacts
of different motion speeds on the image quality and processing accuracy. Moreover, we control
the ambient lighting condition in lab to create various light reflection conditions. This simulated
system is used to drive the design and conduct controlled experiments to verify the performance of
BubCam.

8.1.2 Factory Trials. We deploy the BubCam in the HP’s production lines to capture images of the
manufactured ink bags moving through a conveyor belt as illustrated in Fig. 9(b). We develop a
software program based on an open-source Python library, called Labelme [? ] to manually label
the captured images in collaboration with the HP’s product engineers. Specifically, we first use
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Fig. 10. Comparison with existing bubble detection approaches.

the graphical user interface (GUI) of the developed program to manually create a polygon for
cropping out the bubble areas. These bubble areas are processed to create the label of the captured
images. Then, we work with the engineers to confirm the labeling results. However, this manual
labeling process is tedious and extremely time-consuming. In addition, only limited number of ink
bags are available to be used for data collection. Thus, we only create a small dataset of images
with confirmed ground-truth labels. Furthermore, we use our proposed knowledge-based labeling
approach (cf. §5.2.2) to create more training images based on these confirmed labels.

8.2 Evaluation of Single-Cam BubCam at lab
8.2.1 Evaluation Settings. We use TensorFlow 2.1 and OpenCV 4.5.3 libraries to build the image
processing pipeline and DRL model of BubCam in Python 3.8. We employ the following three
performance metrics. (1) mean intersection over union (mIoU) is the average of ratios of the overlap
area to the union area between the ground-truth and predicted bubble areas in all testing images.
A higher value of mIoU indicates better segmentation accuracy. (2) Decision accuracy is used to
evaluate the accuracy in estimating the bubble volume. Let𝑚𝑔𝑡 and𝑚pred denote the ground-truth
and predicted numbers of the bubble pixels. Then, the volume estimation result of the ink bag is
considered accurate if |𝑚pred−𝑚𝑔𝑡

|/𝑚𝑔𝑡 ≤ 0.2. This accuracy metric is used for communication in
the factories. (3) Latency is the end-to-end latency for estimating the air bubble volume of an image.

We compare BubCamwith the following three baseline approaches. (1) Circle is a bubble detection
approach proposed in [26]. It uses the CV algorithms to detect individual air bubbles as circles. (2)
RCNN proposed in [11] employs a RCNN model to extract bounding boxes of all individual bubbles
in the image. Then, a shape regression CNN is used to transform the extracted boxes into circles
whose total number of pixels are considered as the bubble volume. (3) BubCam-RGB is a variant of
our BubCam which uses the PSPNet to extract the bubble areas for the bubble volume estimation
without depth fusion.

8.2.2 Evaluation Results. In this section, we evaluate the single-camera BubCam and three baseline
approaches.

■Comparison with bubble detection approaches:We evaluate the BubCam and two baseline
approaches including the Circle and RCNN based on a dataset of 1,000 RGB images which are
collected in our lab’s conveyor belt system. In particular, each RGB image has one corresponding
depth image. The dataset is divided to the training and testing sets by a ratio of 8:2. Fig. 10 shows
the mIoU, decision accuracy and latency of BubCam, Circle and RCNN approaches on a total of 200
testing RGB images which consists of 100 RGB images with/without the light reflection. From Fig. 10,
we can see that the presence of the light reflection reduces the image processing performance of
three approaches. Moreover, BubCam always achieves the highest mIoU and decision accuracy
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Fig. 11. Comparison of BubCam’s variants.

among the three approaches. For instance, BubCam has mIoU of 64.3% and 84.4%, while RCNN has
mIoU of 20.3% and 30.4% in two cases with and without the light reflection, respectively. These
results imply that BubCam achieves mIoU improvement of about 2x and 1.56x, compared with
RCNN. Furthermore, Fig. 10(c) presents the latency of three approaches in the fog node (i.g., Jetson
AGX Xavier) and a workstation with a 3.3GHz CPU, a RTX8000 GPU and a 48GB RAM. From
Fig. 10(c), the Circle has the lowest latency since it employs the simple CV algorithms to detect
the air bubbles. Differently, BubCam and RCNN have higher latencies due to the use of deep CNN
models. However, BubCam can achieve lower latencies than RCNN. Specifically, BubCam can
achieve 2.3 seconds latency on the Jetson AGX Xavier. These results demonstrate the superior
performance of BubCam, compared with the existing CV-based and CNN-based bubble detection
approaches.

■ Comparison between BubCam’s variants: Figs. 11(a) and (b) show the impacts of the
depth fusion and the number of pseudo labels on the mIoU of BubCam. Specifically, from Fig. 11(a),
with the presence of the light reflection, BubCam can achieve better accuracy than its BubCam-
RGB (i.e., BubCam without depth fusion) in estimating the air bubble volume under the presence
of the light reflection. Specifically, BubCam and BubCam-RGB have mIoU of 64.3% and 58.8%,
respectively, with the light reflection. These results demonstrate the usefulness of the depth fusion
in BubCam. Moreover, Fig. 11(b) shows mIoU of the BubCam and BubCam-RGB on 200 testing
images under various number of training images with the pseudo label. First, we use 400 images
with ground-truth labels to create a small training dataset. Then, we additionally include a number
of the pseudo images varying from 800, 400, 200, to 100 into the dataset for training the BubCam
and BubCam-RGB. From Fig. 11(b), we can see that more training pseudo images can help improve
accuracy of the BubCam and BubCam-RGB.

8.3 Evaluation of Multi-Cam BubCam at Lab
In this section, we present the evaluation settings and performance of the SADRL and MADRL
approaches for adapting the parameters of the wireless cameras.

8.3.1 Evaluation Settings. We evaluate the performance of the multi-camera BubCam with two
wireless cameras (i.e., 𝑁 = 2). As mentioned in §4, the OpenMV Cam Plus is used to prototype the
wireless cameras whose activation mode and frame rate are controlled by the DRL-based adaptation
agent implemented in the fog node. Moreover, the OpenMV libraries and Micro Python 1.5.3 are
used to implement the image preprocessing pipeline and camera’s parameter configuration in the
wireless cameras. In the fog node, we use Tensorforce 0.6.3 to implement the SADRL and MADRL
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Fig. 12. Multi-camera SADRL training results.
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Fig. 13. Multi-camera MADRL training results.

approaches. Specifically, for the SADRL approach, the PPO agent consists of two neural networks,
called the actor and value networks. Each network consists of an input layer, two hidden layers
and an output layer. Each hidden layer has 64 tanh units. The Adam optimizer with a learning
rate of 10−3 is used for training. The same neural network structure and parameters are used for
each DRL agent of the MADRL approach. Moreover, the adaptation period 𝜏 is set to 2 seconds.
At the beginning of every period, the DRL agent observes a system state 𝑠 including the presence
of bubbles and reflection in nine sub-areas (i.e., Γ = 9) of the main camera’s last image and the
remaining energy of the wireless cameras. Then, it selects an action 𝑎 to configure the activation
mode and frame rate of the two wireless cameras 𝑓 ∈ [𝑓min, 𝑓max]. The 𝑓min and 𝑓max are set to 0 and
30 FPS, respectively. The frame rate of the main camera L515 is fixed at 30 FPS. We use the mIoU of
the labeled images captured during the 𝑘𝑡ℎ adaptation period as the accuracy 𝜙𝑘 to calculate the
immediate reward 𝑟 (𝑠, 𝑎).

8.3.2 Training Results. The weights 𝜆1 and 𝜆2 in Eq. (1) affect the trade-off between camera energy
usage and compliance to the accuracy requirements. We evaluate the convergence of the DRL agent
training under various settings for 𝜆1 and 𝜆2. Fig. 12 shows the SADRL training traces of the reward,
mIoU (i.e., accuracy) and total energy usage of the wireless cameras over 500 training epochs each
of which consists of 250 adaptation periods. The 𝜆1 is set to 1 while the 𝜆2 varies from 1, 5, to 10.
From Fig. 12(a), we can see that with 𝜆2 = 5, 10, the reward increases and then saturates at around
a certain value along the training epochs. Moreover, Figs. 12 (b)-(c) show that the accuracy and
energy usage have increasing and decreasing overall trends when 𝜆2 = 5, 10. The results show that
the training of the SADRL agent can be convergent with 𝜆2 = 5, 10. Differently, with 𝜆2 = 1, the
reward, accuracy and energy usage mostly remains stable during the training.
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Fig. 14. Comparison of multi-camera SADRL and MADRL approaches (𝜆1 = 1 and 𝜆2 = 10) with baseline
approaches in lab settings. Sub-figures (c) and (d) dot not include the wireless cameras’ total energy usage
and latency of the single-camera BubCam system, respectively, because this system consists of the main
camera only.

Fig. 13 shows the training traces of the reward, mIoU and energy usage of the MADRL approach
in which the 𝜆1 and 𝜆2 are set to 1 and 10, respectively. From Figs. 13 (a)-(c), the reward and mIoU
increase and saturate at certain values after 150 epochs, while the energy usage has the opposite
trend. Moreover, the SADRL and MADRL approaches have the similar saturated values of the
training reward, mIoU and energy usage which are about 80, 72% and 2𝑘 𝐽 , respectively.

8.3.3 Execution Results at Lab. We compare the execution of the multi-camera SADRL and MADRL
approaches with three baseline approaches including the single-camera BubCam, greedy, and
round-robin (RR) approaches in the lab environment. The single-camera BubCam only uses the
main camera with a constant frame rate of 30 FPS. Similar to the proposed DRL approach, the
greedy and RR approaches additionally deploy the wireless cameras to assist the main camera.
Specifically, in the greedy approach, all wireless cameras are always activated with a fixed frame of
30 FPS, while the RR approach activates one wireless camera in an adaptation period.

Fig. 14(a)-(d) presents the mIoU, decision accuracy, total energy usage, and latency of the single
(i.e., single-camera BubCam), greedy, RR, SADRL and MADRL approaches over 50 execution
adaptation periods. From Fig. 14(a) and (b), due to the use of the wireless cameras, the multi-camera
BubCam with the two DRL approaches can achieve higher mIoU and decision accuracy than the
single-camera BubCam. The greedy, RR, SADRL, and MADRL approaches can satisfy the mIoU
requirement and achieves high decision accuracy. From Fig. 14(c), we can see that our two DRL
approaches achieve the lower energy usage than two baseline approaches (i.e., the greedy and RR
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Fig. 15. Retraining performance results of multi-camera SADRL and MADRL approaches. The reward thresh-
old is set to 80.

approaches). The MADRL approach has a slightly higher energy usage than the SADRL approach.
Meanwhile, the greedy approach has the highest energy usage due to the activation of all wireless
cameras over time. In summary, compared with the single-camera BubCam, the multi-camera
BubCam with the DRL approaches can achieve better accuracy at the cost of higher latency and
energy usage.

8.3.4 Retraining Results of DRL Approaches. In this section, we compare the retraining results
of the SADRL and MADRL approaches for the multi-camera BubCam consisting of two wireless
cameras 1 and 2 in the following two cases. In the first case, we move the camera 1 from its old
position to a new position at a distance of 2cm. We also rotate view angle of this camera by 10°. In
the second case, we deploy an additional wireless camera 3 at a 6DoF pose which has the same
view angle and a 4cm distance from the camera 1’s position. We calculate the distance and view
angle correlations of the new camera 3 with the existing cameras 1 and 2. Then, we use the trained
agent from an existing camera whose the highest sum of the distance and view angle correlations
for adapting the configuration of the camera 3.

With the SADRL approach, we retrain the DRL agent to learn the new configuration policies for
all cameras in both two cases. With the MADRL approach, we retrain only the agent of the camera 1
and 3 in two cases, respectively. We employ the following three retraining performance metrics [31].
(1) Jumpstart performance (JP) is the initial performance (i.e., reward) of the trained agent for the
new system configuration before retraining. (2) Asymptotic performance (AP) is the ultimate reward
of the agent after retraining. (3) Time to threshold (TT) is the learning time (i.e., number of retraining
epochs) needed to reach a certain reward threshold which is set to 80. Higher TT value indicates
larger retraining latency and number of required training data samples. Fig. 15 shows the JP, AP
and TT results of the SADRL and MADRL approaches. From Fig. 15(a), the MADRL approach has
lower JP than the SADRL approach in both the system reconfiguration cases. However, after the
retraining process, the MADRL approach can recover the reward loss and achieve the similar AP
value, compared with the SADRL approach as shown in Fig. 15(b). Moreover, from Fig. 15(c), the
MADRL approach requires fewer training epochs to reach the reward threshold of 80, compared
with the SADRL. This is because the MADRL retrains only one DRL agent for the repositioned or
new camera. These results imply that the MADRL approach can achieve similar performance while
requiring less training costs, compared with the SADRL approach.

From Fig. 15(c), the SADRL and MADRL approaches require 45 and 42 training epoches, respec-
tively, to train a DRL agent for the newly added camera. In the evaluation, each training epoch
consists of 𝑇 = 1000 adaptation periods, each of which lasts for 2 seconds. As such, the SADRL and
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Table 1. Comparison of single-camera BubCam with manual inspection approach in factory.

Approach Decision accuracy Latency
Manual inspection 55.4% 5-10 mins
Single-camera BubCam 74.5% 2.3 seconds
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Fig. 16. Comparison of multi-camera SADRL and MADRL approaches (𝜆1 = 1 and 𝜆2 = 10) with baseline
approaches in factory settings.

MADRL approaches take about 25 and 23.33 hours, respectively, to train one DRL agent for the
new camera. These results indicate high retraining costs of the DRL approaches.

8.4 Evaluation at Factory
In this section, we evaluate the single-camera and multi-camera BubCam systems based on the
images collected from the real ink bag production lines in the factory.

8.5 Performance of Single-Camera BubCam
We compare the single-camera BubCam with the manual inspection approach in the factories
(cf. 3.1) based on 400 RGB and 400 depth images collected in the production lines. Table 1 shows
the decision accuracy and latency of the single-camera BubCam and manual inspection approaches
on 200 testing RGB images. Due to the manual measurement procedure, the factory’s current
inspection approach achieves a low accuracy of 55.4% only. Moreover, it takes from 5 minutes to 10
minutes to manually inspect an ink bag in the factory. The single-camera BubCam can achieve
accuracy improvement of 34% and latency reduction of up to 300x, compared with the manual
inspection. Moreover, the single-camera BubCam can take the place of the human monitoring on
the conveyor belt running 24 hours, which can help save a large amount of human resources.

8.6 Performance of Multi-Camera BubCam
We compare our two multi-camera DRL approaches (i.e., the SADRL and MADRL) with three
baseline approaches (i.e., the single-camera BubCam, greedy, and round-robin (RR) approaches).
Specifically, we collect a total of 162,000 images which are captured by the multi-camera BubCam
with the twowireless cameras at the factory.Wemanually label 1,200 images and use the knowledge-
based labeling (cf. §5.2.2) to generate the labels of remaining images. We train the SADRL and
MADRL approaches with a training dataset of 145,800 images. Fig. 16 presents the mIoU, decision
accuracy, and energy usage of two proposed DRL and three baseline approaches over 16,200 testing
images. From Figs. 16(a) and (b), in the factory environment, all approaches suffer from the mIoU
drop of about 3%-5%, compared with the lab environment results as shown in Figs. 14(a) and (b). The
main reason of the mIoU and decision accuracy drop is the complex environmental conditions (e.g.,
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the dynamic lighting condition) at the factory. Moreover, two proposed DRL approaches still can
meet the mIoU requirement and achieve high decision accuracy with less energy usages, compared
with two baseline approaches.

9 DISCUSSION AND FUTUREWORK
The above evaluation results show that BubCam outperforms six baseline approaches including the
current manual inspection approach. Moreover, in the production lines, the ink bags move on the
conveyor belt and appear in the camera’s field of view one by one at every period of 10 seconds.
Thus, the automated quality inspection of each ink bag should be completed within 10 seconds.
Meanwhile, BubCam can achieve the end-to-end latency of less than 3 seconds. This indicates
that BubCam can meet the latency requirement of the production lines. Regarding the inspection
accuracy requirement, our design objective is that BubCam should obtain a higher accuracy than
the manual inspection approach. This objective is achieved according to our evaluation results.
However, performance of BubCam highly depends on the availability of sufficient labeled ink

bag images for training and testing the BubCam’s CNN-based image segmentation and DRL-based
camera configuration adaptation models. In this study, we develop a manual labeling approach
which requires a collocation with technicians in the production lines. This manual labeling approach
is labor intensive and time-consuming. To facilitate the labeling process, we further design the
knowledge-based labeling approach (cf. §5.2.2) which uses the motion speed of the ink bag and
the ground-truth label of an image to label the consecutive images of the same ink bag. However,
our knowledge-based labeling approach cannot translate a ground-truth image label to the image
labels of different ink bags. Thus, it takes a lot of efforts to create a big labeled image dataset of
different ink bag sizes and colors for development and evaluation of BubCam.
Moreover, BubCam is susceptible to input perturbations which can be caused by the working

environment noises/disturbance. In BubCam, we use a camera to capture images to train the deep
CNN-based image segmentation model (i.e., PSPNet). The trained PSPNet may not show the same
performance on the cameras deployed for estimating the air bubble volumes of manufactured ink
bags in the production lines. This is because the quality of captured images across different cameras
may be different due to the deviation in light intensity condition of the cameras. To address this
issue, we collected the training images in the production lines at different time periods such that
the training dataset can cover many different lighting conditions. As future work, we will adopt
the data augmentation methods proposed in [2, 19] to extend the training dataset. Specifically,
we can capture the training images under different controlled lighting conditions and model the
relationship between the captured images. Then, the modeled relationship can be used to augment
the training dataset. As such, the trained PSPNet can have the capability to deal with images
captured at unseen lighting conditions.

10 CONCLUSION
This paper presents the design and implementation of a smart camera system, called BubCam
for the automated quality inspection of the ink bags manufactured in the HP’s ink production
lines. BubCam employs a DL-based image segmentation and fusion pipeline to accurately estimate
the volume of the air bubbles in the inspected ink bags under the complex settings and dynamic
environment conditions in the factories. Furthermore, BubCam additionally deploys multiple
wireless cameras to achieve better accuracy based on the multi-view visual sensing information. To
save battery power of the wireless cameras, the single and multi-agent DRL-based configuration
approaches are proposed to adapt the configuration for the camera’s activation mode and frame
rate in responses to the changes of the presence of the air bubble and light reflection. Extensive
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evaluation based on lab testbed experiments and factory deployment, as well as comparison with
six baseline approaches are conducted to show the effectiveness of the proposed BubCam systems.
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