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ABSTRACT
Visual sensing has been widely adopted for quality inspection in
production processes. This paper presents the design and implemen-
tation of a smart collaborative camera system, called BubCam, for
automated quality inspection of manufactured ink bags in Hewlett-
Packard (HP) Inc.’s factories. Specifically, BubCam estimates the
volume of air bubbles in an ink bag, which may affect the printing
quality. The design of BubCam faces challenges due to the dynamic
ambient light reflection, motion blur effect, and data labeling diffi-
culty. As a starting point, we design a single-camera system which
leverages various deep learning based image segmentation and
depth fusion techniques. New data labeling and training approaches
are proposed to utilize prior knowledge of the production system
for training the segmentation model with a small dataset. Then, we
design a multi-camera system which additionally deploys multiple
wireless cameras to achieve better accuracy via multi-view sensing.
To save power of the wireless cameras, we formulate a configura-
tion adaptation problem and develop a deep reinforcement learning
(DRL)-based solution to adjust each wireless camera’s operation
mode and frame rate in response to the changes of presence of air
bubbles and light reflection. Extensive evaluation on a lab testbed
and real factory trial shows that BubCam outperforms six baseline
solutions including the current manual inspection and existing bub-
ble detection and camera configuration adaptation approaches. In
particular, BubCam achieves 1.34x accuracy improvement and 260x
latency reduction, compared with the manual inspection approach.

CCS CONCEPTS
• Computer systems organization→ Sensor networks; • Com-
puting methodologies→ Image segmentation.
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1 INTRODUCTION
With the recent advancements of Internet of Things (IoT) and deep
learning (DL) techniques in dealing with complex data patterns,
visual inspection has been increasingly employed to enable the auto-
mated quality control at manufacturing lines [2, 9, 12]. The purpose
is to automatically detect any defects in the manufactured products
with low latency before the final distribution to the customers [16].
The designs and implementations of such automated inspection
systems often require many efforts in dealing with the stringent
requirements, practical constraints, and complex environmental
conditions of the industrial processes.

In this paper, the target application is the quality inspection of
the ink bag products manufactured in Hewlett-Packard (HP) Inc.’s
ink factories for large industry printers. A key task is to measure
the total volume of air bubbles inside an inspected ink bag. During
the production process, the ink-filling machines may inject air
bubbles into the ink bags. The ink bag with air that exceeds a certain
volume can significantly reduce the printing quality of the printer
using the ink bag. Specifically, during the printing process, the ink
may absorb air, leading to unstable velocity of the ink droplets [5].
Thus, the quality inspection is needed to ensure that the ink bags
with unacceptably large volumes of air are not distributed to the
customers.

The current protocol of HP’s factories adopts a manual quality
inspection procedure which begins with removing the outer plastic
layer of the inspected bag and then squeezes the air bubbles to form
an air cone in a corner of the bag. Finally, the size of the air cone
is manually measured to estimate the volume of air. This manual
measurement suffers from low accuracy and high latency. From the
historical records, it can take up to 10 minutes to inspect an ink
bag. Moreover, it is a costly destructive test due to the removal of
the outer plastic layer of the ink bag.

To increase the inspection accuracy and throughput, and reduce
the costs, in this paper, we design and implement a smart camera
system, called BubCam, which uses a fog computing (FC)-assisted
wall-powered depth camera and wireless cameras for automated
quality inspection of the ink bags. The primary goal of BubCam is to
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accurately estimate the volumes of the air inside the manufactured
ink bags without manual intervention. However, in this application,
the sizes of the air bubbles are at millimeter-level. Our experiments
in §7 show that the existing bubble detection approaches using
the conventional computer vision (CV)-based [17] and the recent
convolutional neural network (CNN)-based [7] object detection
algorithms have inferior performance in estimating the volumes of
small bubbles. To achieve high accuracy, BubCam employs a DL-
based image segmentation model which extracts multiple regions
of bubbles in the images for the air volume estimation.

Due to the dynamic environment condition and complex set-
tings of the production lines, the design of BubCam also faces the
following three additional challenges. First, in the production lines,
the ambient light often reflects on the surface of the ink bags. As
a result, the air bubbles may be blocked and invisible in the cap-
tured RGB images. Moreover, the location of the reflected areas
may change over time due to the dynamic lighting condition in
the factories. Second, the quality of the images can suffer from the
motion blur effect caused by the movement of the ink bag on the
conveyor belt. Third, labeling images of the manufactured ink bags
is labor-intensive and time-consuming.

To address the first two challenges, we develop a late fusion
scheme which combines the segmentation results of multiple con-
secutive RGB images to generate the final result of the air volume
estimation. Fusion can help improve the estimation accuracy be-
cause different frames may have different quality and reflected
areas under variations of the light reflection and motion blur con-
ditions. To achieve higher accuracy under the dynamic lighting
conditions, the depth sensing information is also fused with the
RGB images when the reflection areas are detected in the RGB
images. To address the problem of labeling difficulty, we propose a
knowledge-based labeling approach which utilizes the prior knowl-
edge of the production to facilitate the labeling process.

Multiple views of a scene are generally robust against the light
reflection variation problem. Thus, we further develop a multi-
camera BubCam system which uses multiple wireless cameras to
assist the main wall-powered camera. The wireless cameras are
deployed to capture the inspected ink bag from different view angles.
These images are then fused with the images captured by the main
camera. Specifically, due to the low cost and easy installation of
the wireless cameras, the multi-camera BubCam can be deployed
in an ad hoc fashion to achieve better accuracy, especially under
the dynamic light reflection condition.

However, the wireless cameras are often powered by batteries
with finite capacities. Thus, it is desirable to adapt their configu-
ration to minimize the camera’s energy consumption while main-
taining the system performance in response to the variations of
the presence of air bubbles and the lighting condition. For instance,
the wireless cameras should be only activated when the bubble
areas are blocked by light reflection in the images of the main cam-
era. Furthermore, the capturing frame rate of the wireless cameras
should increase when the air bubbles appear in their field of view.
Otherwise, the frame rate should be kept minimum to save power.
To this end, we propose a novel configuration adaptation approach
to maintain desired accuracy with minimum energy consumption.
Specifically, we formulate an adaptation problem as a Markov de-
cision process (MDP) which configures the activation mode and

image frame rate of the wireless cameras. Then, we apply deep
reinforcement learning (DRL) to learn the optimal configuration
policy.

We perform extensive evaluation via testbed experiments in both
controlled lab and factory trials. Specifically, we collect an image
dataset to drive the design of the proposed DL-based image process-
ing pipeline and DRL-based configuration adaptation approach. We
compare BubCam with six baseline approaches which include the
factories’ manual inspection, three bubble detection and two con-
figuration adaptation baseline approaches. The evaluation results
show that BubCam achieves accuracy improvement of about 1.34x
and latency reduction of up to 260x, compared with the factories’
manual inspection.

The contributions of this work can be summarized as follows:
• We design and implement BubCam which applies the DL-
based image segmentation and fusion techniques to accu-
rately estimate the volume of the air bubbles in the ink bags
on the HP’s production lines. BubCam addresses challenges
caused by combined impacts of the motion blur and strong
reflection conditions in the industrial environment.

• We formulate the camera configuration adaptation problem
and propose a DRL-based approach to learn the efficient
configuration policy in the industrial settings. The DRL-
based approach helps reduce the wireless camera’s energy
consumption while maintaining the system performance.

• We set up real testbeds in both a controlled system and the
factories’ manufacturing lines to evaluate BubCam. Effective-
ness of BubCam is compared with six baseline approaches.
The design of BubCam can be useful to the developments of
other vision systems for the automated quality inspection of
the relevant products in the industrial processes.

Paper organization: §2 reviews related work. §3 describes back-
ground and approach overview. §4 overviews the design of BubCam.
§5 and §6 present the detailed design of the single-camera andmulti-
camera BubCam systems, respectively. §7 presents the evaluation
results. §8 concludes the paper.

2 RELATEDWORK
In this section, we review the related works on industrial visual
inspection, bubble detection, and multi-camera systems.
■ Industrial visual inspection: Visual inspection is widely

adopted to inspect the quality of manufactured products in factories.
For instance, the study in [4] developed a visual sensing system
which aims to rectify millimeter-level edge deviation during pro-
duction at the factory. The developed system can help increase the
material utilization rate and save manpower. Moreover, in [12], the
authors designed the fog computing (FC)-assisted camera systems
to detect defects of the tile products in real time. Similarly, BubCam
is a visual sensing system which aims to inspect the quality of the
air bubbles in the ink bags on the production lines.
■ Bubble detection: Bubble detection is important in many

industrial applications. The existing studies [6, 7, 10, 17] mainly
applied object detection algorithms for bubble detection, which
can be divided into the following two main categories. The first
category consists of the conventional CV-based object detection ap-
proaches [10, 17] which generally use the edge detection algorithms
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a) An ink bag manufacturing line.          b) Manual quality inspection.
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Figure 1: An illustration of factories’ manual inspection.

to extract the air bubbles from the images. Then, the extracted areas
are fit to the geometry shapes (e.g., circles or ellipse) whose size
is considered as the bubble volume. For instance, the study in [17]
adopted a hough circle detection algorithm to extract the bubble
areas from the image. Then, a concentric circular arrangement algo-
rithm was used to determine the circles that best fit to the extracted
bubble areas. The second category consists of the DL-based object
detection approaches [6, 7]. For instance, the study in [7] developed
a region-based CNN (RCNN) model to detect the bounding boxes
of the bubbles from the image. Then, a shape regression CNN was
adopted to transform the extracted boxes to circles or ellipse whose
total number of pixels is considered as the bubble volume. In [6], the
authors proposed a generative adversarial network (GAN) model to
generate the augmented images for efficiently training the RCNN
model with a limited labeled images dataset. However, as shown by
our experiments in §7, these existing CV-based and DL-based ob-
ject detection approaches have inferior performance in estimating
the volume of the small bubbles in the inspected ink bags. Thus,
BubCam employs a DL-based segmentation model for the bubble
volume estimation.
■Multi-camera systems: Existing studies [3, 13, 14, 20] pro-

posed the use of multiple cameras for product quality inspection
in the production lines. For instance, the study in [3] developed a
multi-camera system to inspect defects on the stereo skeleton of
the car. Specifically, multiple cameras are deployed to cover dif-
ferent parts of the car for detecting the tiny defects in real time.
In [14], the authors designed a multi-camera system to achieve
a highly accurate 3D profile measurement. Moreover, the study
in [20] proposed a multi-camera system to inspect the quality of
the product parts moving on the conveyor belt in the factories. The
proposed multi-camera BubCam uses the multiple wireless cam-
eras to improve the bubble volume estimation accuracy under the
dynamic ambient light reflection conditions. Similar to [15, 20], we
adapt the configuration for the camera’s parameters to achieve the
desired performance with minimum energy consumption under
the time-varying environment conditions.

3 BACKGROUND, MOTIVATION & APPROACH
In this section, we present the background of the ink bag quality
inspection at HP’s factories. Then, we describe the design approach
and challenges of BubCam.

3.1 Background and Motivation
As discussed in §1, the current protocol of the HP’s factories adopts
a manual quality inspection approach to estimate the volume of the

air bubbles inside the manufactured ink bags. Fig. 1 illustrates how
the ink bags are inspected in theHP factories. Specifically, the empty
ink bags with two plastic layers are filled by the ink-fillingmachines.
Then, the filled ink bags are moved through the conveyor belt to
the packaging process. However, the filling machines may inject air
into the bags. The air bubbles with a sufficiently large volume can
reduce the printing quality of the industrial printers [5]. Thus, the
quality inspection is performed to ensure that the ink bags with air
exceeding a certain volume are not distributed to the customers and
provide feedback to determine the need for corrective actions in
the ink-filling process. To achieve the goal, during the production
process, the technicians continuously monitor and perform human
eye-tracking to examine the ink bags moving on the conveyor
belt. The ink bags detected with the air bubbles are taken for a
manual measurement procedure which begins with removing the
outer plastic layer of the inspected ink bag for better visibility.
Then, the air bubbles are manually squeezed to a corner of the bag,
which approximately forms an air cone as illustrated in Fig. 1 (b).
A backlight is placed behind the ink bag to better visualize the
boundary of the formed air cone. Finally, a vernier caliper is used
to measure the radius and height of the cone for determining the
volume of the air bubbles.

The above manual quality inspection approach has two main
drawbacks as follows. First, it is a destructive test because the outer
layer of the inspected ink bag is removed for the better visibility
of the air bubbles. As such, all inspected ink bags are destructed
even they do not have the large air bubbles. Second, it has high la-
tency. From the historical records, the manual inspection procedure
including the outer layer removal, bubble squeezing and air cone
size measurement can take about 5 minutes to 10 minutes per ink
bag. Thus, to avoid the destructive tests and increase the inspec-
tion throughput, it is desirable to develop an automated inspection
system that can reliably estimate the volumes of the air bubbles in
the ink bags with low latencies.

3.2 Design Approach and Challenges
In this work, we design and implement an automated visual quality
inspection system, called BubCam, to replace the factories’ manual
inspection approach. The key design approach of BubCam is to de-
ploy a single wall-powered camera to continuously capture images
of the manufactured ink bags moving on the conveyor belt. The
camera is deployed at a relatively far distance from the conveyor
belt such that a captured image can contain the entire ink bag.
Meanwhile, the actual air bubbles often have a size of millimeter-
level. As a result, the air bubbles appear with an extremely small
size in the captured images. For instance, as shown in an image
sample in Fig. 2(a), an air bubble has a size of around 1,200 pixels
which only account for 1/768 of the entire 1-megapixel image.

It is nontrivial to accurately estimate the volume of such small
bubbles in the captured images. A possible approach to address this
problem is to place the camera closer to the ink bags. However, in
the production lines, the manufactured ink bags can have three
different sizes of 36.5cm × 31cm, 41.5cm × 37cm, and 42cm × 49cm.
Multiple cameras are needed to capture the entire ink bags with
these large sizes at a short distance. The use of multiple high-quality
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Figure 2: Samples of captured RGB and depth images.

wall-powered cameras increases the system cost and complexity.
Thus, in BubCam, we use a single wall-powered camera.

Furthermore, due to the buoyancy of the ink and the curved
bag surface, the air bubbles often cluster into multiple groups on
the bag’s internal surface. This observation suggests that the air
bubbles in the same group should be detected together. Thus, for
BubCam, we develop a DL-based image segmentation approach
which segments the air bubbles into multiple image regions for
the bubble volume estimation. We also investigate the feasibility
of the existing CV-based [17] and CNN-based [7] object detection
approaches for our bubble estimation problem. However, from our
experiments (cf. §7), these existing approaches have inferior per-
formance, compared with BubCam. The main reason is that these
approaches aim to recognize the air bubbles as individual objects.
Thus, they fail to accurately detect the small bubbles which are
squeezed in multiple groups in the ink bag. Moreover, the DL-based
segmentation model generally requires less effort for image label-
ing than the DL-based object detection approaches. Specifically,
determining the ground-truth label of the bubble regions is often
easier than determining the ground-truth label of the individual
bubbles.

Furthermore, due to the complex production settings and re-
quirements, the design of BubCam also faces the following two
additional challenges. First, the bubble volume estimation accuracy
suffers from the ambient light reflection problem. Specifically, in
the factories, the production systems are often set up in an open
space or an enclosed space covered by the transparent frames. The
ambient light can reflect on the surface of the ink bags at certain
locations which may change over time due to the motion of the ink
bags on the conveyor belt and the surrounding industrial objects
and humans. As a result, the air bubbles can be blocked by the light
reflection on the captured RGB images as illustrated in Fig. 2(a).
The blocked bubbles cannot be detected based on the optical visual
sensing information only. Second, as the ink bags move on the
conveyor belt during the inspection process, the quality of captured
images can be low due to the motion blur effect. The low-quality
images result in low accuracy in detecting small air bubbles.

To address the above challenges, BubCam fuses multiple consec-
utive RGB images which may have different quality and reflected
areas under the dynamic light reflection and motion blur conditions.
Furthermore, we prototype BubCam by a depth camera which can
provide both the RGB and depth images. The hardware components
of BubCam will be described in §4. Figs. 2(a) and (b) show the RGB
and depth images captured by the camera under the light reflection.
As shown in Fig. 2, the air bubble areas which are blocked in the
RGB frame is still visible in the depth image. Thus, to achieve better

accuracy, we fuse the RGB and depth images when a reflected area
is detected on the RGB image.

We further develop a multi-camera BubCam system for higher
accuracy, especially under the dynamic lighting condition from
the ambient environment. The multi-camera BubCam additionally
uses multiple wireless cameras to capture the inspected ink bag
from different view angles. These images are fused with the images
captured by the main camera to generate the final bubble volume
estimation result. Specifically, due to the low cost and easy instal-
lation of the wireless cameras, the multi-camera BubCam can be
deployed in an ad hoc fashion for accuracy improvement, espe-
cially when the strong light reflection is observed. Moreover, we
formulate a camera configuration adaptation problem and propose
a DRL-based learning approach to save the camera’s battery power.

Lastly, data labeling is a challenging task for developing BubCam.
Specifically, labeling process is time-consuming and requires a col-
laboration with the experienced technicians. Thus, it takes a lot of
efforts to create a big labeled image dataset for training and testing
the BubCam’s DL-based image segmentation model. To address
this issue, we design the knowledge-based labeling approach which
utilizes the prior knowledge about the motion of the ink bags to
facilitate the labeling process.

4 SYSTEM OVERVIEW AND HARDWARE
In this section, we overview the design and hardware of BubCam
as illustrated in Fig. 3.

4.1 Overview of Single-Camera System
For the wall-powered camera, we choose L515 [11], an off-the-shelf
LiDAR camera which can provide both RGB and depth images with
a resolution of 1920 × 1080 pixels and 1024 × 768, respectively,
at a frame rate up to 30 frames per second (FPS). Moreover, it
has a sensing range of from 0.25 meters to 9 meters. The L515 is
connected to a fog node prototyped by a Jetson AGX Xavier unit
that is equipped with a 2.03GHz CPU and a mobile 1.2GHz GPU.
The images are processed at the fog node for the bubble volume
estimation. Specifically, the image processing pipeline of the single-
camera BubCam consists of the following three main steps.
■ Image preprocessing: As illustrated in Fig. 3, the main cam-

era L515 captures the ink bags moving through its view on the
conveyor belt. Per image capturing, the L515 provides both RGB
and depth image frames. Upon receiving the captured consecu-
tive RGB frames, the fog node computes the pixel-wise absolute
difference between them and then selects the key frames whose
pixel difference is higher than a certain threshold. Moreover, a color
filtering algorithm is implemented to detect the ink bag and light
reflection areas in each key RGB frame. When any reflection area
is detected, the corresponding depth frame is also selected. The
selected RGB and depth images are fed to the segmentation module.
■DL-based image segmentation:We adopt a deep CNN-based

segmentation model, called pyramid scene parsing network (PSP-
Net) [19] to extract the bubble areas from the images. However, due
to the nature of a deep CNN, training the PSPNet often requires
a large labeled image dataset to achieve satisfactory inference ac-
curacy. As discussed earlier, determining the ground truth of the
bubble areas is nontrivial. Thus, we develop a knowledge-based
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Figure 3: BubCam system overview. A main wall-powered camera is supported by multiple wireless cameras.

image labeling approach which uses the prior knowledge about
the motion speed of the ink bags to facilitate the labeling process.
We also design a new loss function which utilizes relationship be-
tween the bubble volume in the consecutive frames to improve the
training accuracy.
■ Result fusion: The PSPNet takes an RGB/depth image as

input to predict a pixel score map of the image. For the RGB key
frame with reflected areas, its score is fused with the score of its
corresponding depth frame to generate the final score map of the
frame. Then, we consider the total number of pixels with a score
greater than a certain threshold as the bubble volume of the frame.
Finally, the bubble volumes of all frames of the same ink bag are
aggregated to yield the bubble volume of the inspected ink bag.

4.2 Overview of Multi-Camera System
For wireless camera, we choose the lower-power OpenMV H7 Plus
that includes an OV5640 module providing an image resolution
up to 2592 × 1944 (5 Megapixels). The OpenMV is equipped with
an ARM Cortex M7 480 MHz processor, a 32MB SDRAM and a
1MB SRAM which allow us to implement simple algorithms to
preprocess the images locally. Moreover, it is capable of adjusting
its frame rate from 0 to 30 FPS.
■ Local preprocessing: Due to the movement of the ink bags,

the captured images may only contain the conveyor belt. Thus,
to reduce the image processing and communication overheard,
the wireless camera runs a color filtering algorithm to detect the
presence of the ink bag on its images. Then, it only sends the images
with the ink bag to the fog node.
■ DRL-based configuration adaptation: At the fog node, we

implement a DRL-based controller which aims to adapt the config-
uration for the wireless cameras’s parameters in response to varia-
tions of the lighting condition and bubble presence. Specifically, the
DRL controller periodically observes a system state including the
bubble and light reflection presence in the image of the main cam-
era and the residual battery energy levels of the wireless cameras.
Then, it selects an action for configuring the activation mode and
frame rate of the wireless cameras. The main objective is to main-
tain the desired accuracy of the bubble volume estimation while

maximizing the system lifetime. In §6.2, we formally formulate the
configuration adaptation problem and present our DRL solution.

5 DESIGN OF SINGLE-CAMERA BUBCAM
In this section, we describe details of the image preprocessing,
segmentation and fusion modules of the single-camera BubCam.

5.1 Image Preprocessing
5.1.1 Key Frame Selection. The captured consecutive RGB image
frames may have similar contents. To reduce the image processing
overheard, BubCam selects the key frames only for the image seg-
mentation and fusion. Specifically, among the captured frame, the
first frame is always selected as a key frame. Then, the pixel-wise
absolute difference between the first and second frames is computed
to generate a pixel difference map. The difference map is converted
to a gray-scale image. Finally, a median blur algorithm is used to
filter out the noises from the gray-scale image.

A pixel is considered as a changed pixel from the first frame
to the second frame if its value in the gray-scale image is greater
than a threshold value of 80. The ratio of the number of changed
pixels to the total number of frame’s pixels is used to represent the
difference degree between the contents of the two frames. Then,
the second frame is selected as a key frame if its difference degree is
higher than 20%. Given a new frame, the above processing pipeline
is repeated to determine if it is selected as a key frame based on its
difference degree, compared with the latest selected key frame.

5.1.2 Ink Bag and Reflection Detection. BubCam aims to fuse the
key frames of the same ink bag to generate the final volume estima-
tion of the bag. Thus, the third preprocessing step is to determine
groups of the key frames which contain the same ink bag. Specifi-
cally, in the production lines, the ink bags move on the conveyor
belt one by one with a certain distance. As a result, the groups
of the same bag images are interleaved with the images with the
conveyor belt only. Thus, we use presence of the conveyor belt
images to determine the images of the same group.

As the color of the ink bags is different from that of the conveyor
belt, we implement a color filtering algorithm to detect the presence
of the ink bag in the images. Specifically, the algorithm converts
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Figure 4: Knowledge-based labeling approach of BubCam.

the RGB image to the HSV (hue, saturation, value) color map. A
pixel is considered belonging to the ink bag area if its H, S, V values
are within specific ranges which are determined based on the ink
bag color. For instance, for the yellow ink bag, we use the H, S, V
value ranges of [20, 40], [40, 255], and [40, 255], respectively. The
image is considered as a conveyor belt image if no bubble pixel is
detected.

We also use the above algorithm to detect the presence of reflec-
tion areas on the ink bag to determine the need of depth fusion.
Specifically, the color of the reflection areas is white. Thus, we
use the H, S, V value ranges of [222, 256], [0, 256], and [0, 256],
respectively, to detect pixels of the reflection areas.

5.2 Image Segmentation
5.2.1 Segmentation Model. BubCam adopts the PSPNet [19], a
state-of-the-art deep segmentationmodel which uses a ResNet50 [8]
as the backbone CNN model to extract the feature map of the
input image. Then, the feature map is forwarded into a pyramid
pooling module in which the features are fused to generate a feature
representation. Finally, the representation is fed into a convolutional
layer to yield a predicted score map.

5.2.2 Knowledge-Based Labeling. To label the images for training
the PSPNet, we developed a manual labeling approach which re-
quires collaboration with technicians in the production lines. This
manual labeling approach is labor intensive and time-consuming.
More details of this approach will be described in §7.1.1. Thus, we
design a knowledge-based labeling approach which utilizes the
prior knowledge about the motion of the ink bags to label the
images based on the ground-truth labels obtained by the manual
labeling. Fig. 4 illustrates our knowledge-based labeling approach.

Specifically, in the production lines, the motion speed of the ink
bags is known due to the constant rotation speed of the conveyor
belt. We consider the consecutive images of the same ink bag that
have the same ink bag area size but different locations of the ink bag
in the frames. First, we adopt the manual labeling to generate the
ground-truth label (i.e., the pixel score map) of a frame (e.g., frame
𝑖 in Fig. 4) among these frames. Our proposed labeling approach
generates a pseudo label of the unlabeled frame 𝑗 based on the
ground-label of frame 𝑖 . First, we use the color filtering algorithm
as described in §5.1.2 to detect bubble pixels in frames 𝑖 and 𝑗 . Then,
a connected component analysis algorithm [1] is used to extract
the ink bag area as a rectangle bounding box from the frames. Due
to the constant motion speed of the ink bag, the relative distance
between locations of two extracted boxes in frames 𝑖 and 𝑗 can be
determined. The pseudo label of frame 𝑗 is generated based on the
calculated distance and the ground-truth label of frame 𝑖 .

5.2.3 Model Training. We train the PSPNet with a loss function,
given by: 𝐿 = 𝐿𝑐𝑒 +𝐿𝑠 , where 𝐿𝑐𝑒 is the pixel-wise cross-entropy loss

Figure 5: Samples of images with a QR code.

function of the PSPNet, and 𝐿𝑠 is a new loss function that utilizes the
prior system knowledge for improving the accuracy. Specifically,
the consecutive images of the same ink bag should have consistent
volume of the air bubbles. Thus, the 𝐿𝑠 is designed to minimize the
difference between the predicted score maps of these frames. Let 𝛽
denote the number of image training groups, each of which consists
of the consecutive images of the same ink bag with the same bubble
volume in the training dataset. If we define Ω𝑖 = 1, . . . , |Ω𝑖 | as the
set of images in group 𝑖 , then 𝐿𝑠 =

∑𝛽

𝑖=1
∑ |Ω𝑖 |

𝑗=1
∑ |Ω𝑖 |
𝑘=1 |𝑠 𝑗 −𝑠𝑘 |, where

𝑠 𝑗 and 𝑠𝑘 are the predicted total score of images 𝑗 and 𝑘 in group 𝑖 ,
respectively.

5.3 Result Fusion
The PSPNet predicts a pixel scoremap for each input key RGB/depth
frame. First, the score map of the key RGB frame with the light re-
flection is fusedwith the scoremap of its corresponding depth frame.
The L515 of BubCam provides the RGB and depth images with a
resolution of 1920 × 1080 pixels and 1024 × 768 pixels, respectively.
Fusing the entire low-quality depth frame with the high-quality
RGB frame can reduce the image quality. Moreover, the purpose
of the depth fusion is to achieve better accuracy in detecting the
bubbles blocked by the reflection in the RGB image. Thus, we only
fuse the score of RGB pixels in the reflected areas with those in the
depth image. Specifically, the average fusion is adopted to generate
the final score map of the reflected areas in the RGB image. Then,
the score map of the fused frame is used to estimate the bubble
volume by the total number of pixels with scores higher than a
threshold value which is determined based on the ink bag color.
For instance, we use a threshold of 0.5 for the yellow ink bags.
Finally, the bubble volume of an ink bag is obtained by averaging
the volume estimation results of all its key frames.

6 DESIGN OF MULTI-CAMERA BUBCAM
In this section, we present the design of the multi-camera BubCam.

6.1 Image Preprocessing
The images captured by the wireless cameras may contain the
conveyor belt only. Thus, to save the camera’s battery power, the
wireless camera should only send the ink bag images to the fog
node. To achieve this goal, we use the color filtering algorithm in
§5.1.2 to detect the presence of the ink bag in the captured images.

The main and wireless cameras have different view angles. Thus,
we adopt a homography projection algorithm to associate the im-
ages of the wireless cameras with the images of the main camera.
Let 𝐻𝑖 denote the 3 × 3 homography matrix of the wireless camera
𝑖 . The 𝑃𝑖 = [𝑥𝑖 , 𝑦𝑖 , 1] denotes the coordinate vector of a pixel 𝑝𝑖
in the image of the wireless camera 𝑖 . Then, the pixel 𝑞𝑚 with a
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(a) Reflection appearance. (b) Bubble appearance.

Figure 6: Compliance with Markov assumption.

coordinate vector, denoted by𝑄𝑚 = [𝑥𝑚, 𝑦𝑚, 1], in the image of the
main camera is associated with pixel 𝑝𝑖 as follows: 𝑄𝑚 = 𝐻𝑖 × 𝑃𝑖 .
The matrix 𝐻𝑖 for the wireless camera 𝑖 is predetermined during
the deployment phase. Specifically, we paste a QR code on a surface
area of an ink bag. Fig. 5 shows two samples of the ink bag images
with the QR code captured by the main and wireless cameras 𝑖 from
different view angles. Then, the quick response (QR) code areas in
these two images are extracted and associated to determine the 𝐻𝑖 .

6.2 DRL-based Configuration Adaptation
To increase the battery lifetime, a wireless camera should be acti-
vated only when the air bubbles are blocked by the light reflection
in the images captured by the main camera. Moreover, the wireless
camera should increase its frame rate when the air bubbles appear
in its captured images. Otherwise, it can keep a minimum frame
rate. To this end, we develop a DRL-based solution to adapt the
configuration for the activation mode and frame rate of the wireless
cameras in responses to the two exogenous stochastic processes,
i.e., the time-varying presence of the bubbles and reflection.

6.2.1 Assessment of Markov Property. Markov assumption (MA) is
a basic system property where reinforcement learning is applicable.
Thus, we conduct experiments to assess if the above two stochastic
processes satisfy the MA, i.e., P[𝑋𝑡 |𝑋𝑡−1] = P[𝑋𝑡 |𝑋𝑡−1, . . . , 𝑋𝑡−𝑀 ]
with 𝑀 ≥ 0, where the 𝑋𝑡 represents the reflection/bubble pres-
ence at time 𝑡 . Specifically, we consider the probability difference,
denoted by Δ𝑃 = P[𝑋𝑘 |𝑋𝑘−1] − P[𝑋𝑘 |𝑋𝑘−1, . . . , 𝑋𝑘−𝑀 ], as an MA
compliance metric. A lower absolute value of Δ𝑃 indicates better
compliance. Fig. 6 shows the distribution of Δ𝑃 with 𝑀 = 2 for
the reflection and bubble presence in a dataset consisting of 1,000
consecutive images that we captured in the factory. From Fig. 6, we
can see that these two stochastic processes have good compliance
with the MA because their values of Δ𝑃 concentrate at zero. Thus,
we formulate the configuration adaptation as an MDP problem
and propose a DRL-based solution to learn the optimal adaptation
policy.

6.2.2 MDP Formulation. Time is divided into identical intervals of
𝜏 seconds, which is referred to as adaptation period. We divide the
last image captured by the main camera into a number of equal sub-
areas, denoted by Γ. At the beginning of every adaptation period,
called a time step, the presence of the air bubbles and light reflection
on these subareas is observed to configure the activation mode and
frame rate for the wireless cameras. Let 𝑁 denote the number of
wireless cameras in the system.

System state: The system state, denoted by 𝑠 , is a 3-tuple:
𝑠 = (𝐵, 𝐿, 𝐸), where the 𝐵 = [𝑏1, . . . , 𝑏Γ |𝑏𝑖 ∈ {0, 1}] and 𝐿 =

[𝑙1, . . . , 𝑙Γ |𝑙𝑖 ∈ {0, 1}] represent the presence of the air bubbles

Jetson 
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Dome 
light

(b) Lab deployment. 
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GUI

(a) Factory deployment.

L515

Figure 7: System deployment at lab and factory

and light reflection in the Γ image sub-areas, respectively, end the
𝐸 = [𝑒𝑖 , . . . , 𝑒𝑁 ] is a residual energy level vector of 𝑁 cameras.

Configuration action: The configuration action, denoted by 𝑎,
is a vector 𝑎 = [𝛼1, . . . , 𝛼𝑁 , 𝑓 ], where 𝛼𝑖 ∈ {0, 1} is the activation
mode of the camera 𝑖 and the 𝑓 ∈ [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 ] is the frame rate of
all wireless cameras. If the 𝛼𝑖 is equal to 1, the camera 𝑖 is activated.
Otherwise, it is set to the sleep mode. Moreover, the 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥

denote the minimum and maximum frame rates, respectively.
Reward function: Let 𝑒min denote the minimum of the remain-

ing energy levels of 𝑁 wireless cameras at the end of the 𝑘th adap-
tation period and 𝜙k denotes the accuracy of the bubble volume
estimation of the images captured during the 𝑘th period. Then, the
immediate reward, denoted by 𝑟 (𝑠, 𝑎), is defined as

𝑟 (𝑠, 𝑎) = 𝜆1N(𝑒min) + 𝜆2N(min{𝜙𝑘 − 𝜙req, 0}), (1)

where 𝜆1 and 𝜆2 are weights, 𝜙req is the required accuracy, and
N = max(𝑥, 0)/𝑥𝑚𝑎𝑥 represents a normalization process.

The objective of the above MDP problem is to find an optimal
adaptation policy that determines action 𝑎 based on state 𝑠 to maxi-
mize the expected reward over a long run, i.e., E[𝑟 (𝑠, 𝑎)]. As shown
in Eq. (1), the reward 𝑟 (𝑠, 𝑎) is defined based on the weighted sum
of the minimum remaining energy and the degree of violating the
accuracy requirement. Thus, the optimal policy is to satisfy the ac-
curacy requirement while maximizing the system lifetime which is
defined as the operational time of the system until the first wireless
camera runs out of battery.

6.2.3 DRL-based Solution. We adopt the learning framework of a
DRL algorithm, called the proximal policy optimization (PPO) to
learn the optimal configuration adaptation policy. Typically, the
DRL agent interacts with the system to learn the optimal policy.
However, for the formulated problem, training the DRL agent at run
time faces the following two challenges. First, training needs long
times to converge, which may lead to large energy consumption of
the wireless cameras. Second, it is cumbersome to measure camera’s
power and the bubble volume accuracy, without the ground-truth
labels during the online learning phase. To address these two chal-
lenges, we adopt an offline training approach, in which we collect
an image dataset and measure the camera’s power traces during
the collection. The collected images are processed to determine
the presence of the light reflection and the air bubbles. Moreover,
we use the measured power trace to model the camera’s power
consumed to capture an image. Then, we use the image dataset and
the built power model to drive the offline training of the DRL agent.
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Figure 8: Comparison with existing bubble detection approaches.

Table 1: Comparison with manual inspection approach.

Approach Decision accuracy Latency
Manual inspection 55.4% 5-10 mins
BubCam 74.5% 2.3 seconds

Finally, the trained DRL agent is used to adapt the configuration of
the wireless cameras for the online bubble volume estimation.

7 TRIALS AND EVALUATION
In this section, we present the evaluation results of our trials in
factory and lab environments.

7.1 Factory and Lab Trials
7.1.1 Factory Trial. We deploy a multi-camera BubCam’s testbed
in the HP’s production lines to capture images of the manufac-
tured ink bags moving through a conveyor belt as illustrated in
Fig. 7(a). We develop a software program based on Labelme [18]
to manually label the captured images in collaboration with the
HP’s product engineers. Specifically, we first use the developed
program to manually create a polygon for cropping out the bubble
areas. These bubble areas are processed to create the label of the
captured images. Then, we work with the engineers to confirm the
labeling results. However, this manual labeling process is tedious
and extremely time-consuming. Thus, we can create a small dataset
of images with confirmed ground-truth labels. Furthermore, we
use our proposed knowledge-based labeling approach (cf. §5.2.2) to
create more training images based on these confirmed labels.

7.1.2 Lab Trial. We also build a conveyor belt sized 1.5𝑚×0.25𝑚×
0.7𝑚 as illustrated in Fig. 7(b) to simulate the production line in a
lab environment. Specifically, we manually inject different volumes
of air bubbles into the ink bags. Then, we attach the cameras and
fog node to a 3D-printed frame holder to capture images of the ink
bags moving on the conveyor belt. The deployed conveyor belt is
capable of adjusting its rotation speed, which allows us to evaluate
the impacts of different motion speeds on the image quality and
processing accuracy. Moreover, we control the ambient lighting
condition in lab to create various light reflection conditions. This
simulated system is used to drive the design and conduct controlled
experiments to evaluate BubCam.

7.2 Evaluation of Single-Camera BubCam
7.2.1 Evaluation Settings. We use TensorFlow 2.1 and OpenCV
4.5.3 libraries to build the image processing pipeline and DRL model
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Figure 9: Comparison of BubCam’s variants.

in Python 3.8. We employ the following three performance metrics.
(1) Mean intersection over union (mIoU) is the average of ratios of
the overlap area to the union area between the ground-truth and
predicted bubble areas in all testing images. A higher value of mIoU
indicates better segmentation accuracy. (2) Decision accuracy is
used to evaluate the accuracy in estimating the bubble volume. Let
𝑚𝑔𝑡 and𝑚pred denote the ground-truth and predicted numbers of
the bubble pixels. Then, the volume estimation result of the ink
bag is considered accurate if |𝑚pred−𝑚𝑔𝑡

|/𝑚𝑔𝑡 ≤ 0.2. This accuracy
metric is used for communication in the factories. (3) Latency is the
total latency for estimating the bubble volume of an image.

We compare BubCamwith the following four baseline approaches.
(1) Manual is the factories’ manual inspection approach (cf. §3.1).
(2) Circle is a bubble detection approach proposed in [17]. It uses the
CV algorithms to detect individual air bubbles as circles. (3) RCNN
proposed in [7] employs an RCNNmodel to extract bounding boxes
of all individual bubbles in the image. Then, a shape regression CNN
is used to transform the extracted boxes into circles whose total
number of pixels is considered as the bubble volume. (4) BubCam-
RGB is a variant of our BubCam which only processes RGB images
to estimate the bubble volume without depth fusion.

7.2.2 Evaluation Results. Now, we present evaluation results of
the single-camera BubCam and the four baseline approaches.
■ Comparison with bubble detection approaches: We eval-

uate the BubCam and two baseline approaches including the Circle
and RCNN based on a dataset of 1,000 RGB images which are col-
lected in our lab’s conveyor belt system. In particular, each RGB
image has one corresponding depth image. The dataset is divided
to the training and testing sets by a ratio of 8:2. Fig. 8 shows the
mIoU, decision accuracy and latency of BubCam, Circle and RCNN
approaches on a total of 200 testing RGB images which consists of
100 RGB images with/without the light reflection. From Fig. 8, we
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Figure 10: DRL Training results.

can see that the presence of the light reflection reduces the image
processing performance of three approaches. Moreover, BubCam
always achieves the highest mIoU and decision accuracy among
the three approaches. For instance, BubCam has mIoU of 64.3% and
84.4%, while RCNN has mIoU of 20.3% and 30.4% in tthe presence
and absence of the light reflection, respectively. These results imply
that BubCam achieves mIoU improvement of about 2x and 1.56x,
compared with RCNN. Furthermore, Fig. 8(c) presents the latency
of three approaches in the fog node (i.e., Jetson AGX Xavier) and a
workstation with a 3.3GHz CPU, a RTX8000 GPU and a 48GB RAM.
From Fig. 8(c), the Circle has the lowest latency since it employs
the simple CV algorithms to detect the air bubbles. Differently, Bub-
Cam and RCNN have higher latencies due to the use of deep CNN
models. However, BubCam can achieve lower latencies than RCNN.
Specifically, BubCam can achieve 2.3 seconds latency on the Jetson
AGX Xavier. These results demonstrate the superior performance
of BubCam, compared with the existing CV-based and CNN-based
bubble detection approaches.
■ Comparison with manual inspection: Now, we compare

BubCamwith the manual inspection approach in the factories based
on 400 RGB and 400 depth images collected in the production lines.
Table 1 shows the decision accuracy and latency of the BubCam
and manual inspection approaches on 200 testing RGB images. Due
to the manual measurement procedure, the factory’s current inspec-
tion approach achieves a low accuracy of 55.4% only. Moreover, it
takes from 5 minutes to 10 minutes to manually inspect an ink bag
in the factory. BubCam can achieve accuracy improvement of 1.34x
and latency reduction of up to 260x, compared with the manual
inspection.
■ Comparison between BubCam’s variants: Figs. 9(a) and

(b) show the impacts of the depth fusion and the number of pseudo
labels on the mIoU of BubCam. Specifically, from Fig. 9(a), with
the presence of the light reflection, BubCam can achieve better
accuracy than its BubCam-RGB (i.e., BubCam without depth fu-
sion) in estimating the air bubble volume under the presence of
the light reflection. Specifically, BubCam and BubCam-RGB have
mIoU of 64.3% and 58.8%, respectively, in the presence of light re-
flection. These results demonstrate the effectiveness of the depth
fusion in BubCam. Moreover, Fig. 9(b) shows mIoU of the BubCam
and BubCam-RGB on 200 testing images under various number of
training images with the pseudo labels. First, we use 400 images
with ground-truth labels to create a small training dataset. Then,

we additionally include a number of the images with pseudo labels
varying from 800, 400, 200, to 100 into the dataset for training the
BubCam and BubCam-RGB. From Fig. 9(b), we can see that more
training images with pseudo labels can help improve accuracy of
the BubCam and BubCam-RGB.

7.3 Evaluation of Multi-Camera BubCam
7.3.1 Evaluation Settings. In this section, we evaluate the perfor-
mance of the multi-camera BubCam with two wireless cameras
(i.e., 𝑁 = 2). As mentioned in §4, the OpenMV Cam Plus is used to
prototype the wireless cameras whose activation mode and frame
rate are controlled by the DRL-based adaptation agent implemented
in the fog node. Moreover, the OpenMV libriaries and Micro Python
1.5.3 are used to implement the image preprocessing pipeline and
camera’s parameter configuration in the wireless cameras. In the
fog node, we use Tensorforce 0.6.3 to implement PPO-based DRL
model of two neural networks, called the actor and value networks.
Each network consists of an input layer, two hidden layers and an
output layer. Each hidden layer has 64 Tanh units. The Adam opti-
mizer with a learning rate of 10−3 is used for training. Moreover,
the adaptation period 𝜏 is set to 2 seconds. At the beginning of
every period, the DRL agent observes a system state 𝑠 including the
presence of bubbles and reflection in nine sub-areas (i.e., Γ = 9) of
the main camera’s last image and the remaining energy of the wire-
less cameras. Then, it selects an action 𝑎 to configure the activation
mode and frame rate of the two wireless cameras 𝑓 ∈ [𝑓min, 𝑓max].
The 𝑓min and 𝑓max are set to 0 and 30 FPS, respectively. The frame
rate of the main camera L515 is fixed at 30 FPS. We use the mIoU
of the labeled images captured during the 𝑘𝑡ℎ adaptation period
as the accuracy 𝜙𝑘 to calculate the immediate reward 𝑟 (𝑠, 𝑎). The
required mIoU is set to 0.7, i.e., 𝜙req = 0.7.

7.3.2 DRL Training Results. The weights 𝜆1 and 𝜆2 in Eq. (1) affect
the trade-off between camera energy consumption and compliance
to the accuracy requirements. We evaluate the convergence of the
DRL agent training under various settings for 𝜆1 and 𝜆2. Fig. 10
shows the training traces of the reward, mIoU (i.e., accuracy) and
total energy consumption of the wireless cameras over 500 training
epochs, each of which consists of 250 adaptation periods. The 𝜆1 is
set to 1 while the 𝜆2 varies from 1, 5, to 10. From Fig. 10(a), we can
see that with 𝜆2 = 5, 10, the reward increases and then saturates
at around a similar value along the training epochs. Moreover,
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Figure 11: Comparison of DRL (𝜆1 = 1 and 𝜆2 = 10) with
baseline approaches. The dotted lines in (a) represents the
required mIoU 𝜙req = 0.7.

Figs. 10 (b)-(c) show that the accuracy and energy consumption
have increasing and decreasing overall trends when 𝜆2 = 5, 10. The
results show that the training of the DRL agent can be convergent
with 𝜆2 = 5, 10. Differently, with 𝜆2 = 1, the reward, accuracy and
energy consumption mostly remains stable during the training.

7.3.3 DRL Execution Results. We compare the execution of the
trained DRL agent with three baseline approaches which are the
single-camera BubCam, greedy, and round-robin (RR) approaches.
The single-camera BubCam only uses the main camera with a con-
stant frame rate of 30 FPS. Similar to the proposed DRL approach,
the greedy and RR approaches additionally deploy the wireless cam-
eras to assist the main camera. Specifically, in the greedy approach,
all wireless cameras are always activated with a fixed frame rate of
30 FPS, while the RR approach activates one wireless camera in an
adaptation period.

Fig. 11 presents the mIoU, total energy consumption, and latency
of the single, greedy, RR, and DRL approaches over 50 execution
adaptation periods. From Fig. 11(b), due to the use of the wireless
cameras, the multi-camera BubCam with DRL can achieve higher
mIoU than the single-camera BubCam. The greedy, RR, and DRL
approaches can satisfy the mIoU accuracy requirement. Moreover,
Fig. 11(b) represents the total energy consumption of the wireless
cameras under the greedy, RR, and DRL approaches. We can see
that our DRL approach achieves the lowest energy consumption
while the greedy approach has the highest energy consumption due
to the activation of all wireless cameras over time. Furthermore, Fig.
11 (c) also shows the latency of all approaches. The single-camera
BubCam can achieve the lowest latency since it does not need to
process the images captured by the wireless cameras. Among the
three multi-camera approaches, the proposed DRL approach can
achieve the lowest latency. In summary, compared with the single-
camera BubCam, the multi-camera BubCam can achieve better
accuracy at the cost of higher latency and energy consumption.

8 CONCLUSION
This paper presents the design and implementation of a smart cam-
era system, called BubCam for the automated quality inspection of
the ink bags manufactured in the HP’s ink production lines. Bub-
Cam employs a DL-based image segmentation and fusion pipeline
to accurately estimate the volume of the air bubbles in the inspected
ink bags under the complex settings and dynamic environment con-
ditions in the factories. Furthermore, BubCam additionally deploys
multiple wireless cameras to achieve better accuracy based on the

multi-view visual sensing information. To save battery power of the
wireless cameras, a DRL-based configuration approach is proposed
to adapt the configuration for the camera’s activation mode and
frame rate in responses to the changes of the presence of the air
bubble and light reflection. Extensive evaluation based on testbed
experiments in the lab and factory environments, as well as com-
parison with six baseline approaches are conducted to show the
effectiveness of the proposed BubCam systems.
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