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On Credibility of Adversarial Examples against
Learning-Based Grid Voltage Stability

Assessment
Qun Song, Rui Tan, Chao Ren, Yan Xu, Yang Lou, Jianping Wang, and Hoay Beng Gooi

Abstract—Voltage stability assessment is essential for maintaining reliable power grid operations. Stability assessment approaches
using deep learning address the shortfalls of the traditional time-domain simulation-based approaches caused by increased system
complexity. However, deep learning models are shown to be vulnerable to adversarial examples in the field of computer vision. While
this vulnerability has been noticed by the power grid cybersecurity research, the domain-specific analysis on the requirements imposed
upon effective attack implementation is still lacking. Although these attack requirements are usually reasonable in computer vision
tasks, they can be stringent in the context of power grids. In this paper, we conduct a systematic investigation on the attack
requirements and credibility of six representative adversarial example attacks based on a voltage stability assessment application for
the New England 10-machine 39-bus power system. We show that (1) compromising about half the transmission system buses’
voltage traces is a rule-of-thumb attack requirement; (2) the universal adversarial perturbations regardless of the original clean voltage
trajectory possess the same credibility as the widely studied false data injection attacks on power grid state estimation, while the
input-specific adversarial perturbations are less credible; (3) the prevailing strong adversarial training thwarts the universal
perturbations but fails in defending certain input-specific perturbations. To advance defense to cope with both universal and
input-specific adversarial examples, we propose a new approach that simultaneously estimates the predictive uncertainty of any given
input of voltage trajectory and thwarts the attacks effectively.

Index Terms—Adversarial example, cybersecurity, neural networks, smart grid, voltage stability assessment
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NOMENCLATURE

Acronyms
AMI Advanced Metering Infrastructure
APT Advanced persistent threat
CNN Convolutional neural network
CPS Cyber-physical system
CV Computer vision
CW Carlini and Wagner’s method
DF DeepFool
DNN Deep neural network
DR Detection rate
DSR Defense success rate
FDI False data injection
FGSM Fast Gradient Sign Method
FLOPs Floating-point operations
FPR False positive rate
GPU Graphics processing unit
ICTs Information and communication technologies
MC Monte Carlo
OPF Optimal Power Flow
p.u. Per unit
PGD Projected Gradient Descent
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ReLUs Rectified linear units
ROC Receiver operating characteristic
TPR True positive rate
TR Thwarting rate
UAN Universal Adversarial Network
UAP Universal Adversarial Perturbation
VSA Voltage stability assessment
Symbols
`2 Euclidean norm
ε Maximum perturbation intensity
γ Uncertainty threshold
κ CW’s hyperparameter for perturbation intensity
δ Adversarial perturbation
θ Machine learning model weights
a FDI perturbation vector
c An arbitrary vector
H A constant matrix for state estimation
M Matrix to restrict the perturbed area
x′ Adversarial example
X Training data generated by offline simulation
x Input voltage trajectory
Y Training data labels
a An attack method
D Distance metric
d A defense method
dp Dropout rate
f Machine learning model
l Number of attacked buses
N Ensemble size
r An attack requirement
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SA Set of attack methods
SD Set of defense methods
SR Union set of attack requirements
SRi

Individual set of attack requirements
y Stability classification label
Subscripts
MLE Maximum likelihood estimation
m Number of training data samples
n Number of attack requirements
p Number of attack methods
q Number of defense methods

1 INTRODUCTION

E LECTRIC power grid is a critical cyber-physical system
(CPS) that maintains reliable and economical genera-

tion, transmission, and distribution of electricity. It usually
consists of the generating stations that convert the energy
from other forms to electricity, the transmission system that
carries the electric power from generating stations to load
buses, and the distribution systems that distribute the electric
power to the end customers. A control center monitors and
manages the power grid to ensure efficient and sustained
operations [1]. By integrating modern information and com-
munication technologies (ICTs), the traditional power grids
are evolving into smart grids that possess improved sensing
and control capabilities to deal with the new challenges
caused by the increasing deployments of renewable energy,
distributed generation, and demand response [2]. Machine
learning, as an ICT, has been considered and adopted for
enhancing various grid capabilities such as load forecasting
[3], fault diagnosis [4], solar power prediction [5], power
grid controls [6].

The deep neural networks (DNNs), enabled by the ad-
vancements of hardware-based computing acceleration,
have attracted growing interests in power grid applications
[3]–[6] due to their appealing capabilities in extracting so-
phisticated patterns from big data. However, the complex
structures of DNNs engender vulnerabilities under adver-
sarial settings. In this paper, we focus on the threat of
adversarial example [7], which adds minute crafted perturba-
tions to clean inputs and misleads the DNN to yield wrong
inference outputs. Adversarial example can be viewed as a
specific type of the false data injection (FDI) that has been
studied widely under the context of power grid [8].

DNNs can be applied in various power grid operation
tasks. This paper considers a representative task of online
voltage stability assessment (VSA). Maintaining stability is
fundamental for any power system because losing stability
may cause catastrophic blackouts that threaten people’s
properties and lives. During the power grid design phase,
offline VSA conducts time-domain simulations to check the
voltage stability of the grid when presumed disturbances
are injected. Although a high-fidelity system model can
yield accurate offline VSA outcomes, the simulations are of-
ten much slower than the evolution of the physical processes
due to the power system complexities. Thus, time-domain
simulations are ill-suited for online VSA. To develop online
VSA for timely and proper reaction to a contingency, the
grid operator can run extensive offline simulations under
various disturbances and use the results to form a look-up

table or train a machine learning model for online VSA with
real-time voltage measurements [9], [10]. Applying DNNs to
better capture the inherent complexity of voltage dynamics
and advance online VSA is an ongoing interest of power
grid operations [9], [10].

Wrong outputs of VSA can lead to catastrophic conse-
quences. A false negative in detecting instability can cause
missed or delayed activation of fault isolation, which may
result in widespread blackout; a false positive may lead to
unnecessary load shedding and thereby brings misery to the
customers losing power. Thus, the cybersecurity risks faced
by DNN-based VSA due to adversarial examples need to be
understood. Various algorithms of constructing adversarial
examples have been proposed [11]. The effects of adversar-
ial examples have been demonstrated in the safety-critical
CPSs that use computer vision (CV) for perception. For
example, adversarial stickers pasted on road can mislead
learning-based lane detection system of Tesla Autopilot [12].
However, the requirements for implementing these attacks,
though reasonable in the CV tasks, can be too stringent in
the context of VSA. For instance, the clean input is often
needed to compute the malicious perturbation. In the CV-
based lane recognition, the camera’s view of the road as
the clean input can be known a priori to the attacker and
used to craft the adversarial sticker. However, in VSA, the
requirement of obtaining real-time read access to all the
transmission buses’ voltages for constructing attacks can be
very high. Coordinating the real-time eavesdropping and
data tampering for implementing certain attacks imposes
high requirements on the attacker’s resources and skills.

Therefore, indiscriminately transferring the worry from
CV to DNN-based smart grid applications may hinder in-
novations. This paper is motivated by the domain differ-
ences between CV and power grid applications in studying
the vulnerability of adversarial examples. Existing studies
mainly focus on investigating the threat of adversarial ex-
ample attacks for the safety-critical cyber-physical systems
that use CV for perception. However, the requirements
and credibility of implementing adversarial attacks in the
context of safety-critical power grid applications are not well
understood. Thus, we conduct a domain-specific analysis
to understand the credibility of adversarial example attacks
against DNN-based power system applications. Specifically,
we focus on the VSA application. To the best of our
knowledge, systematic analysis on the credibility of ad-
versarial example attacks with due discrimination on the
requirements of implementing them in smart grids is still
lacking. In this paper, we conduct a systematic study to
evaluate the effectiveness of various adversarial example
construction methods against VSA, which impose different
requirements on (1) read access to the original clean voltage
measurements, (2) write access to the voltage measure-
ments, (3) knowledge about the DNN’s internals, and (4)
access to the DNN’s training data. By relating the attack
effectiveness with the attack requirement and analyzing the
difficulty/overhead of meeting the attack requirement, our
evaluation results provide a comprehensive understanding
on the credibility of the various adversarial example attacks
on VSA. We also evaluate the attack effectiveness when the
system defender adopts the prevailing countermeasures of
model hardening and input cleansing. From our evaluation,



3

although a class of model hardening techniques effectively
defend the more credible universal attacks, they are not ef-
fective in counteracting certain input-specific attacks. While
the input-specific attacks are viewed less credible from our
analysis, their possibility cannot be completely ignored.

From the study, we summarize a methodology for eval-
uating the credibility of various types of adversarial ex-
ample attacks on the DNN-based smart grid applications.
The methodology includes: (a) to investigate the individ-
ual attack model for each of the considered adversarial
example attacks characterized by the minimal requirements
needed to effectively mislead the DNN of the smart grid
application; (b) to evaluate the credibility of the attacks
through analyzing the feasibility of the requirements under
the context of the considered smart grid application; and
(c) to evaluate the effectiveness of the existing and/or new
countermeasures in protecting the smart grid application
against the adversarial example attacks.

The main contributions of this paper are as follows:

• We study six types of adversarial example, i.e.,
Fast Gradient Sign Method (FGSM) [7], Projected
Gradient Descent (PGD) [13], DeepFool (DF) [14],
Carlini and Wagner’s method (CW) [15], Universal
Adversarial Perturbation (UAP) [16], and Universal
Adversarial Network (UAN) [17]. We investigate the
minimal requirement of implementing each of them
to achieve effective attack on VSA.

• We show tampering with the voltages of half buses
is a rule of thumb for crafting effective adversarial
examples. The universal adversarial examples (i.e., UAP
and UAN) that do not require read access to bus
voltages are as credible as the FDI on grid state
estimation [8] that has been widely studied. The
input-specific adversarial examples are less credible due
to their indispensable requirement on real-time bus
voltage read access.

• We study the effectiveness of the prevailing de-
fenses of model hardening by adversarial training
and input cleansing via APE-GAN [18] under each
of the six adversarial example attacks. We show
that the PGD adversarial training effectively protects
the DNN-based VSA against the credible universal
adversarial examples but fails to counteract certain
input-specific attacks. To advance defense, we pro-
pose a new approach that simultaneously estimates
the predictive uncertainty of any given input of volt-
age trajectory and thwarts both input-specific and
universal adversarial example attacks effectively.

The rest of this paper is organized as follows. Section 2
reviews related work. Section 3 contains preliminaries and
background. Section 4 states the problem. Section 5 and
Section 6 evaluate the attack requirement and existing de-
fense effectiveness. Section 7 presents our proposed defense
approach of joint attack detection and thwarting. Section 8
concludes this paper.

2 RELATED WORK

Machine learning applied in power systems. Machine
learning-based approaches have been proposed in literature

for load forecasting [3], solar power prediction [5], fault
diagnosis [4], and attack detection [19]. Deep reinforcement
learning is studied for various power grid controls including
voltage, frequency, power, and emergency handling [6]. Ap-
plying machine learning addresses the shortfalls of the con-
ventional simulation-based VSA, e.g., poor real-time perfor-
mance and scalability with respect to the power system size.
Various machine learning techniques such as extreme neural
networks, ensemble learning, recurrent neural networks [9],
and data augmentation [10] are used for VSA. In this paper,
we focus on the adversarial example attacks against the
machine learning models used for VSA.

FDI attacks on power systems. Modern ICTs adopted
in power grids introduce cybersecurity concerns [20]. It is
shown that FDI on power flow measurements can mislead
state estimation and bypass the bad data detection [8].
Further studies show that FDI can be designed to mislead
frequency control [21], voltage control [22], Optimal Power
Flow (OPF) [23], and the Advanced Metering Infrastructure
(AMI) [24]. The studies [21], [22] schedule optimal FDI that
plans the FDI sequence to minimize the time left for reaction
[21] or maximize the state estimation error [22]. The work
[23] proposes a time-efficient framework to analyze the
impact of FDI on the OPF. Countermeasures against FDIs
on power systems have also been investigated, including
both attack detection [21], [24] and mitigation [22], [25]. The
above studies consider the strategic planning and mitigation
of FDI. However, the targets of the FDI are not DNN-based.

Adversarial example attacks on power grid. Adversarial
example is a specific form of FDI aiming to mislead DNN.
The work [3] analyzes the impact of a specific type of ad-
versarial examples on the DNN-based load forecasting. The
work [9] studies the vulnerability of the machine learning
models used for VSA under adversarial examples and eval-
uates the defense effectiveness of the existing adversarial
training. Different from the previous studies, we perform a
requirement investigation based on a VSA application for
six representative adversarial examples that are frequently
evaluated in literature [11] to analyze the conditions for
effective attack launching. Meanwhile, the construction of
these attacks imposes distinct minimal requirement on the
adversary, which provides insights into understanding the
credibility of adversarial examples in the context of power
systems. Our prior work [26] analyzes the requirements and
evaluates the prevailing countermeasures against adversar-
ial examples. In this paper, we further propose a new de-
fense approach that jointly detects and thwarts adversarial
examples.

Countermeasures against adversarial examples. Coun-
termeasures against adversarial examples are categorized
into the model hardening and input cleansing methods. Model
hardening improves robustness against adversarial exam-
ples by modifying the target DNN itself. Adversarial training
is a model hardening method that modifies the training of
the target DNN by including adversarial examples with
their genuine labels. Adversarial training achieves state-
of-the-art defense performance on various benchmarks as
shown in existing research [27] and competition [28]. The
input cleansing method eliminates the adversarial pertur-
bations [11]. Different from ad hoc approaches (e.g., data
randomization, compression, and foveation [11]), the sys-
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(b) Unstable.

Fig. 1: Example of stable and unstable situations.

tematic input cleansing defense of APE-GAN [18] aims to
learn a manifold mapping from the adversarial input to
clean input. The APE-GAN trains a discriminator and a
generator simultaneously. The discriminator aims to dif-
ferentiate between the clean input and the output of the
generator, while the generator aims to cleanse the adver-
sarial input and output its benign counterpart. The tech-
nical details of the adversarial training and APE-GAN are
explained in the supplemental file. Recent defenses adopt
ensembles to counteract adversarial examples [29], [30]. The
work [30] trains multiple minimally overlapping models to
detect adversarial examples. But the work [30] considers
only a limited number of attack construction methods. The
defense proposed in [29] performs input denoising as the
first line of defense and then employs an ensemble to detect
the adversarial examples that escape the input denoising
based on kappa statistics. Different from the approach in
[29], the defense approach proposed in this paper uses
an ensemble to detect adversarial examples based on the
predictive uncertainty. In addition, our approach applies
majority vote to generate the final inference result that is
robust to the adversarial example attacks, which is referred
to as attack thwarting. The works in [29], [30] do not offer
attack thwarting. Note that both existing approaches [29],
[30] do not consider the universal attacks that are more cred-
ible in the context of power system applications according
to our analysis, whereas our approach considers both the
input-specific and universal attacks.

3 BACKGROUND AND PRELIMINARIES

3.1 DNN-based Online Short-Term VSA

A stable power system has the capability to regain an equi-
librium state after a disturbance [1]. Assessing the power
system stability against possible disturbances is important
because instability can lead to area load loss or transmission
lines tripping, which may cause cascading failures and
even widespread blackout. Stability is usually assessed con-
cerning rotor angle, frequency, and voltage. According to the
time scale of the post-contingency dynamics, short-term and
long-term stability assessments cover horizons of several
seconds and up to multiple minutes, respectively. We focus
on the short-term VSA in this paper, which classifies the sys-
tem into stable or unstable conditions based on a one-second
trajectory that contains the voltage traces of the transmission
buses. Note that our study can be extended to other forms
of DNN-based stability assessment. Fig. 1 shows the voltage
trajectories characterizing stable and unstable conditions

TABLE 1: Adversarial example construction methods.

Attack Categorization [11]
Scope Computation Knowledge

FGSM [7] Input-specific One-shot White/black-box
PGD [13] Input-specific Iterative White/black-box
DF [14] Input-specific Iterative White-box
CW [15] Input-specific Iterative White-box
UAP [16] Universal Iterative White/black-box
UAN [17] Universal Iterative White/black-box

over 5.0 seconds. In both trajectories, a fault occurs at 0.1
seconds followed by an automated fault clearance at 0.2
seconds. In stable conditions, all the bus voltages can restore
to acceptable levels (e.g., less than 10% deviations from the
nominal values). In unstable conditions, the bus voltages
remain far away from the nominal values or even collapse.

Time-domain simulations simulating an extensive set
of potential faults are conventionally considered for of-
fline VSA [1]. Differently, online VSA assesses the system
stability with a hard deadline based on real-time voltage
measurements. Restorative actions will be taken if the sys-
tem is assessed unstable. There are mainly two challenges
for online VSA: (1) the system operator has limited/no
information about the fault occurring at run time. How-
ever, the information is needed for bootstrapping the time-
domain simulation; (2) the time-domain simulation is usu-
ally much slower than the evolution of the power system
state. To address these challenges, machine learning has
been adopted for online VSA [9], [10]. Specifically, a machine
learning model f(x;θ) with weights θ is trained to classify
a voltage trajectory x at run time based on a training
dataset (X,Y) = [(x1, y1), ..., (xm, ym)], where x is the
post-fault voltage trajectory generated by the offline time-
domain simulation and y is the stability classification label.
The model f(x;θ) trained with abundant training data can
handle a wide range of faults.

3.2 Taxonomy of Adversarial Example

The taxonomy of adversarial examples is illustrated in
Table 1, according to the categorization in [11]. In terms
of applicable scope of the attack, input-specific means the
adversarial perturbation is crafted to be effective against
individual clean input sample, while universal means the
perturbation is crafted to be effective on many clean ex-
amples. In terms of the computation required, the pertur-
bation can either be generated by a one-shot computation
(e.g., by using a closed-form formula) or an iterative search
process. In terms of the knowledge about the target DNN, the
white-box attacks need complete information of the DNN’s
internals, i.e., weights and architecture, while the black-box
attacks only need the access to run the DNN without know-
ing its internals. Although many effective attacks require
white-box knowledge, some of them are still effective under
the black-box setting that uses a surrogate DNN to craft
the adversarial examples. To train the surrogate DNN, the
adversary may utilize the dataset obtained from querying
the black-box target DNN using many input samples. In
Table 1, such attacks are labeled as “white/black-box.”

In this paper, we study six representative adversarial
examples as shown in Table 1, i.e., FGSM [7], PGD [13],
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DF [14], CW [15], UAP [16], and UAN [17]. The detailed
formulations of these attacks are provided in the supple-
mental file. We briefly describe their essences here. FGSM
computes a one-step perturbation using a closed-form for-
mula. PGD iteratively performs mini-step FGSMs. DF finds
the minimum perturbation added to the clean example to
cross the approximated decision boundary. CW simplifies
the optimization problem for crafting adversarial examples
by applying the Lagrangian relaxation and then searches the
solution. The aforementioned four attacks are input-specific.
Then, we introduce the universal UAP and UAN attacks.
UAP finds the DF perturbation for many clean examples
and accumulates the perturbations to form a unified univer-
sal perturbation. UAN is a generative neural network that
takes as input values randomly sampled from a distribution
and outputs adversarial perturbations.

4 PROBLEM STATEMENT

4.1 System and Data Description
We consider the New England 10-machine 39-bus system
[31], which is a power grid model widely used in power sys-
tem research. The system’s single-line diagram can be found
in the supplemental file. We perform extensive time-domain
simulations to generate voltage trajectories using the com-
mercial industry-standard software PSS/E [32]. PSS/E is
a leading-edge electromechanical time-domain simulation
tool designed for comprehensive assessment of dynamic
behavior of power systems. Compared with existing voltage
security assessment tools, PSS/E is more powerful and can
be used to calculate security limits under specified crite-
ria, contingencies, and transfer conditions for a rich set of
models. Specifically, we consider composite load because
high penetration of induction motor loads is the driving
force for short-term voltage stability issues in today’s power
systems. We adopt the industry-standard composite load
model “CLOD” [33] to model different load components
including small motors, large motors, discharge lighting,
transformer saturation, and voltage-dependent loads in the
simulations of PSS/E software. In each simulation, a three-
phase fault that lasts for a random time duration ranging
from 0.1 to 0.3 seconds is injected to a randomly selected
bus. The fault is cleared by a single or double transmission
line tripping, which simulates different topology change
scenarios. Each voltage trajectory consists of the voltage
traces of the 39 buses. The sampling rate is 100Hz. In total,
6,536 voltage trajectories are generated, covering a wide
range of practical system operating points. We divide the
voltage trajectories into 4,536 training, 1,000 validation, and
1,000 testing samples. Each sample is a 1 × 3900 vector
containing the 39 buses’ voltage traces over a one-second
duration after the clearance of the fault. We use a con-
volutional neural network (CNN) for VSA. The CNN has
two convolutional layers with 128 1 × 5 filters followed by
1× 2 max pooling, two convolutional layers with 256 1× 5
filters followed by 1×2 max pooling, two dense layers with
512 rectified linear units (ReLUs) each, and a binary-class
output layer. The trained CNN has an accuracy of 99.5%
on the validation dataset. The empirically measured false
positive rate and the false negative rate are 0% and 0.5%,
respectively, in detecting the instability.

Algorithm 1: Credibility analysis of adversarial ex-
amples against DNN-based VSA.

Input: Training dataset (X,Y), VSA DNN f(·;θ),
set of attack methods SA = {a1, ..., ap}, set of
defense methods SD = {d1, ..., dq}, union set
of attack requirements SR = {r1, ..., rn},
empty sets of individual attack requirements
SRi

= ∅, i = 1, ..., p
Output: Individual attack requirement sets

SRi
, i = 1, ..., p, credibility analysis results

for attack ai ∈ SA do
Generate adversarial examples based on (X,Y)
and f(·;θ);

% Obtain minimal set of requirements for each attack.
for requirement rj ∈ SR do

Evaluate whether adversarial examples of ai
requires rj to mislead f(·;θ);

if ai requires rj then
Add rj to SRi ;

else
Continue;

end
Credibility analysis for ai based on SRi

;

for defense dk ∈ SD do
Evaluate the defense effectiveness of dk for ai;

end
end

4.2 Threat Models and Research Problem

Misleading the target DNN by adding minimized pertur-
bation to the input is the general objective for the six
adversarial example attacks. As shown in Table 1, the six
attacks with different features impose distinct sets of mini-
mal requirements to render the attack effective. Thus, the six
attack construction methods correspond to different threat
models. The union set of their requirements contains the
following four specific requirements.

(1) Read access to the clean voltage measurements: A
voltage trajectory contains the voltage traces of all trans-
mission buses. The read access of the voltage trajectory is
related to the applicable scope of the adversarial example
(i.e., input-specific or universal). The input-specific attacks
need this read access since they require the whole clean
voltage trajectory to craft attacks. In contrast, the universal
attacks do not require this access.

(2) Write access to the voltage measurements: The
number of voltage traces that the attacker needs to tamper
with is an important requirement related to the overhead
of launching attacks. The capability to tamper with all the
voltage traces of transmission buses (i.e., full write access)
apparently implies a strong and resourceful attacker.

(3) Knowledge about DNN’s internals: This is related to
the white-/black-box features of the attack as summarized
in Table 1.

(4) Access to DNN’s training data: This specifies
whether the dataset used to train the target DNN, e.g., the
labeled historical voltage trajectories, is needed for effective
attack construction.
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This paper investigates the credibility of adversarial
example attacks against the DNN-based VSA by inquiring
three issues. First, we investigate the minimal set of re-
quirements for each attack to mislead the VSA DNN, which
precisely depicts the threat models for different attacks. Sec-
ond, we analyze the credibility of the attacks based on their
minimal requirements. The different requirement aspects
should be weighed differently, e.g., meeting the real-time
requirements (1) and (2) is often more difficult than meeting
the static requirements (3) and (4). Finally, we evaluate
the defense performance of prevailing countermeasures for
VSA against the credible attacks and develop new counter-
measures if the existing ones are found ineffective in certain
cases. The credibility analysis procedure is summarized in
Algorithm 1.

5 ATTACK REQUIREMENT INVESTIGATION

5.1 Attack Evaluation Settings

The adversarial examples are constructed based on the 1,000
test samples described in Section 4.1. For the input-specific
attacks, a 1 × 3900 perturbation vector is computed for
each test sample under the white-box setting against the
target DNN or under the black-box setting against the sur-
rogate DNN. The surrogate DNN has the same architecture
and hyperparameters as the target DNN and is trained
using the same training dataset at random initialization.
The UAP attack computes a universal perturbation vector
using 1,000 randomly selected training data samples. Then,
the universal perturbation is applied to all the 1,000 test
samples. We adopt the hyperparameters setting from [17]
and train the UAN attack generator using 1,000 randomly
selected training data samples. Then, we use the generator
to generate a 1× 3900 perturbation for each of the 1,000 test
samples.

5.1.1 Partial perturbation implementation
We implement the adversarial example construction that
only requires write access to a subset of l buses because
the number of voltage traces that the attacker needs to
tamper with is a key requirement, as discussed in Sec-
tion 4.2. The formulation of such partial perturbation is:
δ∗ = argminδD(x,x′) subject to f(x′;θ) 6= y and only
the input dimensions of x correspond to the l buses to be
attacked are perturbed. Specifically, a 1 × 3900 matrix M,
which has unit values in the dimensions of the l buses
to be perturbed and zero values in the dimensions where
no perturbation is added, is applied to restrict the area
modified by the adversary. For one-shot attack, i.e., FGSM,

TABLE 2: Requirements for effective attacks against VSA.

Attack
Minimal requirement

Access Knowledge
Read Write DNN internal Training data

FGSM [7] Yes Partial Either
PGD [13] Yes Partial Either
DF [14] Yes Partial Yes No
CW [15] Yes Full Yes No
UAP [16] No Partial No Yes
UAN [17] No Partial No Yes

each computed adversarial perturbation is multiplied by M
and added to the clean example. For iterative attacks, we
perform the multiplication at each step during the search
process for attack construction. We set l to be 1, 5, 10, 15,
20, 25, 30, and 39 in the experiments. For each setting, we
perturb the first l bus voltage measurements.

5.1.2 Attack perturbation intensity settings
Intuitively, adversarial examples with larger intensity of
perturbation can mislead the target DNN more effectively.
Thus, for fair comparison of attack effectiveness, it is non-
trivial to configure the attack perturbation intensity. We use
DF to guide the settings of ε for FGSM, PGD, UAP, and
UAN and κ for CW, as DF automatically finds the minimal
adversarial perturbations to mislead the target DNN. Note
that ε is the maximum perturbation intensity, and κ is a
hyperparameter controlling perturbation intensity. Please
refer to the supplemental file for the definition of these two
hyperparameters. From Fig. 2, the per-bus average intensity
of the `2 perturbations found by DF decreases with the
number of attacked buses (i.e., l). This is because, when
the perturbations are restricted to fewer buses, the needed
perturbation intensity is larger to mislead the DNN. The
average perturbation intensity ranges from 0.27 per unit
(p.u.) to 2.12p.u. when 1 ≤ l ≤ 25. Since the nominal bus
voltage is 1p.u., these values are unacceptably large. Thus,
we consider DF with 30 ≤ l ≤ 39 such that the average
perturbation intensity is at most 0.16p.u..

Fig. 3 shows the accuracy of DNN under PGD attack
versus l when ε is from 0.01p.u. to 0.2p.u.. With ε = 0.1p.u.
and 0.2p.u., the attack is effective when sufficient bus
voltage readings are tempered with. We set ε = 0.2p.u. for
FGSM, PGD, UAP, and UAN and κ = 0 for CW. Note that
the average perturbation intensity for CW with κ = 0 is
0.18p.u.. In a word, the settings of ε = 0.2p.u. and κ = 0
enable fair comparison among the six attacks. Note that
we can configure the adversarial perturbation magnitude.
In this paper, the maximum deviation from the nominal
bus voltage is set at ±0.2p.u.. We evaluate the worst-case
vulnerability of the VSA DNN under this setting.

5.2 Attack Effectiveness and Requirements

Table 2 summarizes the results from our evaluation. The
results indicate the minimal requirement for each of the six
attacks to fool the VSA DNN. The column of “read access”
states the necessity for the adversary to obtain the clean
voltage trajectory. The column of “write access” describes
whether the adversary needs to perturb all the bus voltage
traces (full) or just a portion of them (partial) for the attack
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Fig. 4: Clean, randomly perturbed, and FGSM-perturbed
bus voltage trajectories. The clean sample in (a) is classi-
fied as unstable; the randomly perturbed sample in (b) is
correctly classified as unstable; the FGSM-perturbed sample
in (c) is wrongly classified as stable.

to be effective. The “DNN internal” and “training data”
columns specify whether the DNN internal and a training
dataset are needed, respectively.

5.2.1 Random perturbations versus adversarial examples
Fig. 4 shows a clean, unstable bus voltage trajectory, and
its randomly perturbed and FGSM-perturbed counterparts.
Each element of the random perturbation is randomly and
independently sampled from the standard normal distribu-
tion and clipped to [−0.2, 0.2]p.u.. The FGSM perturbations
with maximum intensity at 0.2p.u. are applied to all buses.
The DNN achieves 99.3% test accuracy under the random
perturbation, which is only 0.2% lower than that on clean
samples. However, in the presence of FGSM attack, the accu-
racy drops to 45.4%. This shows that, even if the adversary is
able to compromise all bus voltage readings, they still need
to apply intelligence to plan the perturbation.

5.2.2 Effectiveness of input-specific adversarial examples
Fig. 5a presents the VSA accuracies under white-box attacks.
The input-specific FGSM, PGD, DF, and CW are not effective
when 1 ≤ l ≤ 15, where FGSM with l = 15 causes
the lowest accuracy of 84.2%. The DNN accuracies drop
to 45.5% and 57.6% under the FGSM and PGD attacks
with l = 20, respectively, which suggest that input-specific
adversarial examples under white-box setting can decrease
VSA accuracy by more than 50% through tampering with
about half the bus voltage measurements. The DF attacks
with 30 ≤ l ≤ 39 are very effective, which cause only 15.2%
and 8.0% VSA accuracies when l = 30 and 35, respectively.
When 1 ≤ l < 39, the CW attack is not effective. When
CW can temper with all buses, the DNN accuracy drops
to 15.5%. This suggests that, although the optimization-
based CW is often regarded as one of the most powerful
attacks in CV applications [11], its effectiveness against VSA
is conditioned on the write access to all input dimensions.
In contrast, the gradient-based FGSM, PGD, and DF attacks
achieve non-negligible attack effectiveness when partial in-
put dimensions are under attack. We summarize the results
in the “write access” column of Table 2.

Fig. 5b presents the VSA accuracies under black-box
attacks. We can see that the VSA accuracies remain at 84.9%
and 99.6%, respectively, under the DF and CW attacks,
which implies the ineffectiveness of the black-box DF and
CW attacks. The reduced attack effectiveness against the
black-box target DNN is because the DF and CW adversarial
examples overfit the surrogate DNN used for constructing
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Fig. 5: DNN accuracy in the presence of attack.

them. Among all the input-specific attacks, FGSM shows
the strongest transferability from the surrogate DNN to the
target DNN. When l increases from 15 to 20 for FGSM, the
DNN accuracy drops from 95.7% to 56.7%, which is similar
to the results obtained under the white-box setting. Attack
effectiveness of PGD reduces in the black-box setting. How-
ever, when l increases from 30 to 35, the DNN accuracy still
drastically drops from 63.3% to 46.1%. The FGSM and PGD
exhibit good transferabilities because they are less overfit
to the surrogate DNN. These results imply that keeping
the target model confidential is a weak defense against
FGSM and PGD. We summarize the results in the “DNN
internal” column of Table 2. The “either” note means the
attack requires only the DNN internal under the white-box
setting or only the training data for building the surrogate
DNN under the black-box setting.

5.2.3 Effectiveness of universal adversarial examples
As shown in Fig. 5a, the VSA accuracies remain at above
98.6% under white-box UAP and UAN with 1 ≤ l ≤ 15.
The white-box universal adversarial examples can decrease
the VSA accuracy by up to 49.5% when tempering with only
half the buses. Specifically, when l increases from 20 to 25,
VSA accuracy drops from 99.2% to 50.0% under white-box
UAP. When l increases from 15 to 20, DNN accuracy drops
from 99.2% to 62.8% under white-box UAN. Thus, in Table 2,
UAP and UAN require partial “write access”.

From Fig. 5b, black-box UAP and UAN exhibit similar
attack effectiveness as under the white-box setting, which
indicates the target DNN internal is not a must for UAP
and UAN to take effect. This is summarized in the “DNN
internal” column of Table 2. When l ≥ 25 and 20, UAP
and UAN are effective, respectively, showing that UAP
is slightly less effective than UAN. Meanwhile, black-box
universal UAP and UAN attacks are more effective than
all the black-box input-specific attacks. This indicates that
universal attacks effectively capture the distribution of the
adversarial examples while avoiding overfitting to the sur-
rogate DNN under the black-box setting. Note that crafting
both white-box and black-box universal attacks requires a
clean training dataset, as summarized in Table 2.

5.3 Implications and Credibility Analysis
The key observations from the evaluation results in Sec-
tion 5.2 are summarized as follows:

• Except CW and DF attacks, all other adversarial
example attacks can decrease the target DNN’s ac-
curacy by around 50% when tempering with about
50% of the input dimensions.
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• CW and DF can be very effective, in that they can
decrease the target DNN’s accuracy to below 20%
and 10%. However, they impose strong requirements
such as read and write access to the voltage traces of
many/all buses, and the DNN internal.

• Preserving the confidentiality of the DNN internal is
a weak defense, because four attacks remain effective
under the black-box setting.

• Universal adversarial example attacks are effective
against VSA DNN under both the white-box and
black-box settings.

In what follows, we discuss the implications of these
results in the context of smart grids.

5.3.1 Static knowledge needed by attacker
Static knowledge required by the adversary contains train-
ing data and DNN internal. From Table 2, each of the six
attacks requires at least one of them for effective attack con-
struction. However, since training data and DNN internals
are static information, it is not difficult for the adversary
to obtain them under the scenario of advanced persistent
threat (APT), e.g., conducting social engineering against
employees of the grid operator. Even if the attacker can only
obtain a black-box VSA DNN (e.g., its binary executable),
they can feed massive unlabeled input samples to the black-
box DNN to obtain the corresponding labels, forming a
training dataset for building a surrogate DNN. Then, the
adversary can craft the effective FGSM, PGD, UAP, or UAN
adversarial examples. In summary, under the APT scenario,
preserving the confidentiality of the static knowledge is
a shaky defense. Therefore, the weights of the last two
columns of Table 5.2 are marginal in the attack credibility
assessment against VSA.

5.3.2 Implication of write access requirement
The adversary must have the capability to modify the volt-
age traces of all or some buses, in order to launch adversarial
example attack. We discuss the implication of our results
from two facets.

Compromising half the buses is a rule of thumb: Our
evaluation shows that certain input-specific attacks such as
DF and CW can almost subvert VSA when all buses are tem-
pered with. However, as shortly analyzed in Section 5.3.3
that input-specific attacks are less credible, the subversion
is also less credible accordingly. Thus, the degradation of
VSA accuracy to about 50% caused by the universal attacks
as shown in Fig. 5 is a more credible maximal attack ef-
fectiveness. Section 5.2.3 shows that UAN is more effective
than UAP. A significant drop of DNN accuracy occurs under
UAN when l increases from 15 to 20. When l continues
to increase from 20, the further accuracy drops are less
salient. Since the cost of the attack increases with l (which
is discussed in the next paragraph), compromising half the
buses to obtain their write accesses is a rule of thumb for the
adversary.

Attack implementation: There are three possible ways
for attack implementation. (1) An adversary within the
enterprise network of the power grid control center can
compromise the measurements of all buses. This strong ad-
versary, however, is ill-motivated because it should directly

subvert the VSA results. (2) An adversary compromises the
communication links from the buses to the control center.
On one hand, interception of the network transmission of
the clean voltage trajectory on the communication paths,
e.g., on a router, is required to transmit the maliciously
perturbed voltage trajectory to the control center without
causing suspicion. On the other hand, the cryptographic
protection needs to be breached. For instance, the attacker
may have obtained the master keys of the compromised
links, which, however, implies a strong adversary. Exploit-
ing zero-day vulnerability of the cryptographic protection
(e.g., OpenSSL’s Heartbleed bug) does not require the mas-
ter key. However, the availability of such zero-day vul-
nerabilities is opportunistic and obtaining them is often
costly. (3) An adversary manipulates the analog sensors by
using remote electromagnetic inferences, which have been
demonstrated feasible in [34]. However, such sensor reading
manipulation attack is delicate and requires extensive skills.
Through the above discussions, the attacks on the com-
munication links and the analog sensors, though requiring
significant investment and expertise, have certain credibility
and cannot be complacently ignored.

5.3.3 Implication of read access
We separately discuss the implications of the input-specific
and universal attacks in the context of VSA, which require
full and no read access to the clean input.

Input-specific attacks: Since the input-specific adversar-
ial examples cannot be generated until obtaining the whole
voltage trajectory, it is not applicable for the adversary to
conduct the sensor reading manipulation by electromag-
netic interference as discussed in Section 5.3.2. As a result,
the adversary must compromise the communication links
from all buses to the control center, which incurs a high
overhead. The requirement of full read access renders the
input-specific attacks resource- and skill-demanding.

Universal attacks: The universal adversarial examples
are independent of the real-time clean input samples. There-
fore, they can be implemented either through sensor reading
manipulation by electromagnetic interference or by compro-
mising the communication links. The sophisticated intercep-
tion required by the input-specific attacks is not required.
Note that the widely studied FDI attack against the power
grid state estimation [8] is also a universal attack. To be more
specific, the perturbation vector added to the power flow
measurement is given by a = Hc, where H is a constant
matrix for state estimation and c is an arbitrary vector. That
is to say, the perturbation a is independent of the power
grid real-time power flow state and only the piece of static
knowledge of the system (i.e., H) should be obtained by the
adversary. Given the same nature of the universal adversary
example attacks and the state estimation FDI attack studied
in [8], they have the same credibility that has substantially
concerned the relevant research communities.

5.3.4 Summary
Based on the above analysis, the universal adversarial ex-
ample attacks pose credible threats against VSA. Between
UAP and UAN, the latter is more effective according to our
evaluation. If the UAN attacker compromises the voltage
traces of more than half the buses, devastating effects can be
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TABLE 3: Summary of defense effectiveness. “3” and “7” represent effective and ineffective defenses. “White” and “Black”
refer to “White-box” and “Black-box” attacks. “N.A.” for the black-box DF and CW attacks means these attacks are not
effective and thus not used to evaluate defense effectiveness.

`````````̀Defense
Attack Input-specific attacks Universal attacks

FGSM PGD DF CW UAP UAN
White Black White Black White Black White Black White Black White Black

¶ FGSM adv training 3 3 7 3 7 N.A. 3 N.A. 3 3 7 3
· PGD adv training 3 3 3 3 7 N.A. 3 N.A. 3 3 3 3

¸ APE-GAN 3 7 3 7 7 N.A. 3 N.A. 7 7 7 7
¹ APE-GAN+PGD adv training 3 3 3 3 7 N.A. 3 N.A. 7 7 3 3

generated on VSA. Meanwhile, the possibility of launching
the input-specific adversarial example attacks should not be
expelled. They are less credible and their results presented
in this section help us understand the attack effectiveness
more comprehensively.

6 EVALUATION OF DEFENSE EFFECTIVENESS

6.1 Defense Evaluation Settings

We evaluate the defense performance of adversarial train-
ing, APE-GAN, and the combination of them as the defense.

Setting of adversarial training. We consider two vari-
ants of adversarial training called FGSM adversarial training
[7] and PGD adversarial training [27], which add 1,000 FGSM
or PGD adversarial examples with genuine labels, respec-
tively, into the training dataset. The added samples for
adversarial training are generated based on the validation
dataset with ε set to 0.2p.u.. The FGSM-hardened DNN
achieves 99.2% accuracy on clean test samples and 98.6%
on FGSM adversarial examples generated from clean test
samples. The PGD-hardened DNN achieves 98.6% accuracy
on clean test samples and 98.2% on PGD adversarial ex-
amples crafted from clean test samples. These results show
that the hardening is effective against the considered attack
method. To evaluate the defense performance, we consider
both white-box setting, where the attacker can access the in-
ternals of the hardened DNN, and black-box setting, where
the attack cannot access the hardened DNN’s internals.
Thus, under the white-box setting, the defense follows the
Kerckhoffs’s principle to assume an enemy knowing the
system including its defense mechanism. Under the black-
box setting, the adversary crafts the attacks based on the
surrogate DNN trained using the obtained clean training
data. Note that the adversarial training is not applied by the
adversary to harden the surrogate DNN.

Setting of APE-GAN. We follow the procedure in [18]
to train the APE-GAN using the clean training dataset
and 1,000 FGSM adversarial examples crafted against the
target DNN. The APE-GAN is first applied to cleanse the
input samples before the inferencing by VSA DNN. To
evaluate the defense performance, we consider both settings
of white-box and black-box. In the white-box setting, the
adversarial examples are generated against the target DNN.
Note that we do not consider APE-GAN in this white-box
setting, since the generation of adversarial perturbations
aiming to bypass APE-GAN is still an open issue. In the
black-box setting (which is not mentioned in the APE-GAN
paper [18]), the adversarial examples are constructed based
on the surrogate DNN.

Combination of adversarial training and APE-GAN.
The results that will be shortly presented in Section 6.2
show that PGD adversarial training is more effective than
FGSM adversarial training. As a result, we consider the
combination of PGD adversarial training and APE-GAN as
defense for better performance. During the training, we first
apply PGD adversarial training to harden the DNN. Then,
we train the APE-GAN using the clean training dataset and
1,000 FGSM adversarial examples crafted based on the PGD-
hardened DNN. During the testing, the APE-GAN is firstly
applied to cleanse the input and then the PGD-hardened
DNN is used to make the inference. We evaluate the defense
performance of this combination scheme under both white-
box and black-box attacks. In particular, we use the target
PGD-hardened DNN to generate white-box adversarial ex-
amples; and we use the surrogate DNN that is not hardened
by adversarial training to generate the black-box adversarial
examples.

6.2 Defense Effectiveness Results
Table 3 summarizes the defense performance. An “effective”
attack means that it can decrease the accuracy of the target
DNN to 80% and below; an “effective” defense means that it
can maintain the accuracy of the target DNN at above 80%,
in the presence of an effective attack. From Section 5.2, the
black-box DF and CW are not effective attacks. Thus, these
two attacks are considered in the evaluation of the defense
performance in this section.

Effectiveness of adversarial training. Fig. 6 presents the
accuracy of the VSA DNN that is hardened by adversarial
training versus l under the white-box and black-box attacks.
We first analyze the defense performance of adversarial
training under input-specific attacks. From Fig. 6a, under
the white-box PGD with l = 35 and 39, FGSM adversarial
training is not effective. However, under the white-box PGD
attack, PGD adversarial training is effective. This result
indicates that PGD adversarial training is more effective
in protecting the VSA DNN than the FGSM adversarial
training. Under the white-box DF with 30 ≤ l ≤ 39, both
defenses of FGSM and PGD adversarial training are not
effective. Adversarial training is effective against all effec-
tive black-box input-specific attacks, as shown in Fig. 6b.
We then analyze the defense performance under universal
adversarial examples. As shown in Fig. 6, PGD adversarial
training effectively protects the target DNN against both the
white-box and black-box universal attacks. The observations
from Fig. 6 are summarized in the top two rows of Table 3
headed by ¶ and ·.

Effectiveness of APE-GAN. Fig. 7 shows the VSA
DNN’s accuracy versus l when APE-GAN is applied to
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Fig. 6: VSA accuracy in the presence of adversarial training
defense. The legends of (b) are the same as (a).
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Fig. 7: VSA accuracy when APE-GAN defends attacks.

cleanse the input under both the white-box and black-box
settings. We first evaluate the defense effectiveness of APE-
GAN under the input-specific attacks. Under the white-
box setting, APE-GAN is only ineffective against the input-
specific DF attack. Under the black-box setting, APE-GAN is
ineffective against both attacks of FGSM and PGD. We can
see that the defense of APE-GAN is more effective under
white-box attacks. This is caused by the design of APE-GAN
with the goal of removing the adversarial perturbations
generated by the adversary based on the white-box target
DNN [18]. We then evaluate the defense effectiveness of
APE-GAN under universal attacks. As shown in Fig. 7a,
when l = 15 and 20, white-box UAP adversarial examples
can bypass the APE-GAN with probabilities of 36.1% and
49.5%. When l = 25, 40.4% of the white-box UAN adver-
sarial examples bypass APE-GAN. From Fig. 7b, APE-GAN
achieves poor defense effectiveness against universal attacks
in black-box setting. In summary, APE-GAN cannot defend
against universal adversarial examples. The observations
obtained from Fig. 7 are summarized in the row of Table 3
headed by ¸.

Effectiveness of adversarial training combined with
APE-GAN. Fig. 8 plots the VSA DNN’s accuracy when
APE-GAN is combined with a PGD-hardened DNN (i.e.,
the combination scheme presented in Section 6.1). As none
of the PGD adversarial training and APE-GAN are effective
against the white-box DF, combining them is also ineffec-
tive to counteract with the white-box DF. Moreover, the
combination has deteriorated the defense performance for
UAP attacks under certain settings (i.e., when l = 39 under
the white-box setting and 10 ≤ l ≤ 20 under black-box
setting), compared with applying PGD adversarial train-
ing solely. This suggests that the APE-GAN pre-processing
may worsen the defense effectiveness of the adversarially
hardened DNN in defending against certain attacks. Non-
monotonicity of DNN accuracy versus l can be observed in
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Fig. 8: Defense effectiveness of combining PGD adversarial
training and APE-GAN against various attacks.
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Fig. 9: Approach overview. This paper considers four vari-
ants of VSA ensemble, i.e., MC-dropout DNN units, MC-
dropout DNN, DNN unit ensemble, and DNN ensemble.

Fig. 7a, Fig. 7b, and Fig. 8b. This is because the cleansing of
APE-GAN is unpredictable and may sometimes disrupt the
input samples and thus decrease the accuracy. Meanwhile,
since we only consider one random combination of l buses
to be compromised from all 39 buses, the randomness may
also contribute to the non-monotonicity. We do not consider
all combinations of the l compromised buses for the reason
that the number of experiments to generate one point in the
figures will be huge. For instance, to choose 10 buses from 39
ones, there are

(39
10

)
= 635, 745, 396 possible combinations.

The results observed from Fig. 8 are summarized in the row
of Table 3 headed by ¹.

6.3 Implication of Results
From Table 3, PGD adversarial training is effective against
all attacks except the white-box DF attack. Thus, the PGD
adversarial training can be applied to protect DNN-based
VSA against the more credible universal adversarial ex-
amples that generate non-negligible concerns. However,
although it is exorbitant to craft sophisticated input-specific
attacks, the possibility of launching such attacks cannot
be totally ignored. The following section presents a new
defense approach that jointly detects and thwarts both uni-
versal and input-specific attacks.

7 JOINT ATTACK DETECTION AND THWARTING

The results in Section 6 show that the state-of-the-art de-
fenses cannot fully thwart adversarial example attacks.
Moreover, it is essential to detect adversarial examples in the
power system, such that these samples can be flagged and
passed to human experts for further analysis. In this section,
we propose a new defense approach to counteract both the
input-specific and universal adversarial example attacks.
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Fig. 10: VSA ensembles’ accuracies on clean and adversarial samples that do not trigger the attack detector.
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The approach consists of (1) an attack detection module
that measures the predictive uncertainty of any given input
to detect adversarial examples; and (2) an attack thwarting
module that aims to generate the genuine label for the input.

7.1 Approach Overview

Fig. 9 illustrates the run-time workflow of our approach.
Given as input the voltage trajectory of all buses’ voltage
traces, each DNN of the VSA ensemble generates a pre-
diction. The design of VSA ensemble will be presented in
Section 7.1.2. Based on the multiple predictions generated
by the VSA ensemble, a predictive uncertainty and an
ensemble prediction for the input are generated together.
Then, the predictive uncertainty is compared with a pre-
defined uncertainty threshold. If the predictive uncertainty
is smaller than the threshold, the input is considered clean
and the ensemble prediction is the final output. Otherwise,
the input is considered adversarial. In this case, the ensem-
ble prediction for this input is invalid and the input will be
passed to human expert for further analysis.

7.1.1 Preliminary on predictive uncertainty estimation

Predictive uncertainty estimation measures the predictive
uncertainty of DNN [35], which is essential for safety-
critical decision making in autonomous systems. Bayesian
deep learning is commonly applied to model predictive
uncertainty [35]. Given the training dataset (X,Y) =
[(xi, yi), i = 1, ...,m], as opposed to learning a point es-
timate of the model parameters (denoted by θ̂MLE) via
maximum likelihood estimation by minimizing the neg-
ative log-likelihood −

∑m
i=1 log p(yi|xi,θ), Bayesian deep

learning infers the probability distribution over the model
parameters under the Bayesian inference framework. Specif-
ically, the posterior distribution over the model parameters

is modeled by p(θ|X,Y) = p(Y|X,θ)p(θ)
p(Y|X) . Then, the predic-

tive posterior distribution given a new input sample x∗

is obtained by marginalizing out the estimated posterior
distribution over the model parameters: p(y∗|x∗,X,Y) =∫
p(y∗|x∗,θ)p(θ|X,Y)dθ. However, in practice, it is in-

tractable to marginalize over the whole parameter space for
complex DNNs due to the vast dimensionality. Among the
various approximations made to tackle this issue, the Monte
Carlo dropout [36] (MC-dropout) and deep ensembles [37]
are two approaches widely adopted. In particular, MC-
dropout activates dropout layers during both the training
and testing processes, which can be viewed as perform-
ing variational inference with Bernoulli distributed random
variables. The predictive uncertainty is given by perform-
ing multiple stochastic forward passes on the same input.
Deep ensembles approach trains multiple models with ran-
dom initialization and shuffled training data. The obtained
ensemble is used to produce uncertainty estimation. The
existing studies of uncertainty estimation mainly focus on
evaluating the attack detection performance of adversarial
examples. In this paper, we propose an approach that jointly
performs attack detection based on predictive uncertainty
and attack thwarting using majority vote.

7.1.2 VSA ensemble design and setting

In our experiments, we consider two basic neural network
architectures for the DNNs in the VSA ensemble. The first
architecture is the one described in Section 4.1, which we
refer to as VSA DNN. The second architecture is the VSA
DNN units. Specifically, each VSA DNN unit is trained
using the voltage traces of a single bus only. We investi-
gate this architecture to evaluate whether the DNN units
trained using non-overlapping parts of the input data are
more diverse and generate more distinct predictions for
adversarial examples. Each of the VSA DNN units has two
convolutional layers with 32 and 64 1 × 5 filters, two fully
connected layers with 128 neurons each, and one binary-
class softmax layer. We then combine the two architectures
with the two uncertainty estimation methods mentioned in
Section 7.1.1, i.e., MC-dropout and deep ensemble. Specifi-
cally, we consider four variants of VSA ensemble as follows.

1) MC-dropout DNN units are trained and tested
with dropout applied before every weight layer. The
ensemble has 39 VSA DNN units corresponding to
all buses. For each input, the ensemble parameters
are different due to the randomness of dropout.

2) MC-dropout DNN trains a VSA DNN with dropout
applied before every layer. The ensemble has N
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Fig. 12: ROCs of VSA ensembles.

VSA DNNs sampled during testing with dropout
activated.

3) DNN unit ensemble has 39 VSA DNN units trained
from random initialization and with shuffled train-
ing data. It can be viewed as the MC-dropout DNN
units with a zero dropout rate. The ensemble pa-
rameters during testing are static.

4) DNN ensemble consists of N VSA DNNs trained
with shuffled training data at random initialization.

The dropout rate for the MC-dropout DNN and MC-
dropout DNN units is denoted by dp.

7.1.3 Attack detection
At run time, each input sample consisting of the voltage
traces of all buses is sent to the VSA ensemble. Based on
the multiple predictions generated by each of the DNN in
the VSA ensemble, the predictive uncertainty is calculated.
In this paper, the predictive uncertainty is defined as the en-
tropy of the multiple predictions. The predictive uncertainty
is then compared with a pre-defined uncertainty threshold γ
to decide whether the input is clean or adversarial. The γ can
be configured to achieve the desired trade-off between the
unnecessary overhead incurred to human experts (which is
characterized by the false positive rate, FPR) and the attack
detection performance (which is characterized by the true
positive rate, TPR).

7.1.4 Attack thwarting
The attack thwarting aims to give the genuine labels of
the adversarial examples that are not flagged by the attack
detection. The attack thwarting performance is evaluated
by the accuracy on the adversarial examples that are not
detected by the VSA ensemble. In our approach, if an input
is not detected as adversarial, the ensemble prediction for
this input is computed by applying majority vote on the
predictions generated by all members of the VSA ensemble,
i.e., the predicted label that has the most occurrence is yield
as the final output.

7.2 Performance Evaluation
The evaluation is conducted using the four variants of VSA
ensemble described in Section 7.1.2. We set dp = 0.2 and
N = 40.

7.2.1 Performance in absence of attack
This section evaluates the accuracy of the four variants of
VSA ensemble on the clean test samples. Fig. 10 shows
the accuracies of the clean samples that do not trigger the

TABLE 4: Defense performance measured by defense suc-
cess rate/detection rate/thwarting rate (%) when false pos-
itive rate ≤ 8%. VSA ensemble variants denoted by (1)-(4)
are explained in Section 7.1.2.

VSA ensemble variants
(1) (2) (3) (4)

100/73.8/26.2 91.5/11.2/80.3 99.9/89.6/10.3 99.7/99.2/0.5

adversarial example detector versus the FPR. The FPR is
the percentage of the clean samples that are detected as
adversarial. We can see that all variants of VSA ensemble
except the MC-dropout DNN can achieve accuracies of
100% on clean examples when the FPR is larger than or
equal to 7.6%. This is because the models sampled from MC-
dropout DNN are less diverse and tend to generate similar
predictions. This lack of diversity of the MC-dropout DNN
also results in the lower values of predictive uncertainty as
shown in Fig. 11 and poor attack detection and thwarting
performance presented in Section 7.2.2.

7.2.2 Performance in presence of attack

In this section, we evaluate the attack detection and the
attack thwarting performance of our approach, respectively.
The adversarial examples in our experiments are crafted
using a surrogate VSA DNN, as described in Section 5.1. We
only consider the adversarial examples that can successfully
mislead the surrogate VSA DNN.

First, we evaluate the attack detection performance.
Fig. 12 shows the receiver operating characteristic (ROC)
curves of the four VSA ensemble variants under different
adversarial example attacks. Different points in a curve are
obtained by varying the uncertainty threshold γ from 0.1 to
0.65 with a step size of 0.05. The FPR indicates the unnec-
essary overhead incurred to human experts in performing
analysis on the clean examples. The TPR shows the effec-
tiveness of the attack detection. A higher ROC curve means
a better trade-off between the unnecessary overhead and
attack detection effectiveness. From Fig. 12, DNN ensemble
achieves the highest ROC curves under different attacks.
Specifically, when the FPR is higher than 6.6%, almost all the
adversarial examples are detected. This can be inferred from
the values of predictive uncertainty as shown in Fig. 11. In
Fig. 11, the predictive uncertainty of different adversarial
examples given by the DNN ensemble are always higher
than zero. Thus, all adversarial examples can be detected
using a lower uncertainty threshold γ, which, however,
increases the FPR. Differently, the remaining three variants
of VSA ensemble produce zero predictive uncertainty values
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for the adversarial examples. Therefore, these adversarial
examples cannot be detected no matter how low the uncer-
tainty threshold γ is set. In the following experiments, we
will show that these undetected adversarial examples can
be rectified by the attack thwarting module using the MC-
dropout DNN units and DNN unit ensemble.

Next, we evaluate the attack thwarting performance.
Fig. 10 presents the accuracy on the undetected adversarial
examples versus the FPR of the attack detection. A higher
curve indicates a better trade-off between the unnecessary
overhead and the attack thwarting performance. Under cer-
tain settings, all adversarial examples are detected and thus
are not shown in Fig. 10. We can see that the MC-dropout
DNN units achieve the best performance. When the FPR is
7.6%, the accuracy on the undetected adversarial examples
is 100%. In comparison, when the accuracy is 100% for the
DNN unit ensemble, the FPR is 13.4%.

7.2.3 Computation performance

This section investigates the computation overhead and
execution latency of our approach. The experiments are
conducted on our computing server. The server has 10-
core Intel Core i9-7900X 3.30GHz CPU and runs Ubuntu
18.04. The server also has four NVIDIA GeForce RTX 2080
Ti 11GB graphics processing units (GPUs). All our codes are
implemented using Python 3. For VSA ensemble variants
(1), (3), and (4), we evenly distribute all the VSA DNNs
or VSA DNN units to the four GPUs for parallel inference
execution. The VSA ensemble variant (2) is replicated on
each GPU. For parallel inference execution, the ensemble
has N

4 VSA DNNs sampled on each GPU. To compare our
approach with the adversarial training, we run the single
adversarially trained VSA DNN on a single GPU. Since we
focus on short-term VSA in this paper, we only measure
the computation performance of inferencing on the input
sample with batch size = 1.

Table. 13a summarizes the number of parameters and the
floating-point operations (FLOPs) for the four VSA ensem-
ble variants as well as the single adversarially trained VSA
DNN. Fig. 13b presents the execution latency for different
VSA DNN architectures. From the results, we can see that
the VSA ensemble variants (1) and (3) achieve less than 1 ms
latency, which is comparable with running the single adver-
sarially hardened VSA DNN. The variants (2) and (4) have
higher latency of around 3 ms, which is intuitive because
the two variants consist of more parameters and require
more FLOPs when inferencing. However, this latency is still
relatively low given that the time duration for the input
sample is one second.

7.3 Summary of Results

We summarize the defense performance of our approach by
three metrics: Defense success rate (DSR) measures the rate
of detecting or correctly classifying the undetected adversar-
ial examples; Detection rate (DR) measures the percentage
of adversarial examples being detected; and Thwarting rate
(TR) measures the percentage of the adversarial examples
that are undetected but correctly classified by the attack
thwarting. Note that DSR = DR + TR. Table. 4 summarizes

Arch Params FLOPs
(1) 16 53
(2) 128 56,073
(3) 16 53
(4) 5,114 56,073

DNN 128 1,402

(a) The parameter number and
FLOPs in 106 for different VSA
DNN architectures.
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Fig. 13: Computation performance evaluation results. (1)-
(4) denote the VSA ensemble variants explained in Sec-
tion 7.1.2. “DNN” represents the single adversarially trained
VSA DNN.

the results. We can see that our approach using the MC-
dropout DNN units can achieve 100% of DSR with a rela-
tively low FPR of less than 8%. Besides, our measurement
in Section 7.2.3 shows running the MC-dropout DNN units
achieves inference latency that is comparable with running
the single adversarially harden DNN. Thus, we recommend
to use the MC-dropout DNN units as the VSA ensemble in
counteracting adversarial examples on VSA.

8 CONCLUSION

This paper analyzed the requirement and credibility of six
adversarial example attacks on the voltage stability assess-
ment. We showed that effective adversarial example attacks
need to compromise the voltage traces of at least half the
transmission system buses. The universal adversarial exam-
ples pose similar credibility as the widely studied false data
injection on power grid state estimation. In addition, we
found that the model hardening using an adversarial train-
ing approach can effectively counteract the more credible
universal adversarial examples but fail in thwarting certain
less credible input-specific adversarial examples. Since the
possibility of such attack cannot be completely ignored, we
propose an approach using an ensemble to jointly detect
adversarial examples based on predictive uncertainty and
thwart adversarial examples using majority vote. The eval-
uation shows our approach using the MC-dropout DNN
units can effectively defend against all the adversarial ex-
amples. Specifically, compared with the PGD adversarial
training that achieves accuracy as low as 1.4% under certain
less credible attack, our approach using the MC-dropout
DNN units can achieve 100% defense success rates for all
the six attacks, including both the more credible and less
credible attacks. Meanwhile, the average execution latency
for the MC-dropout DNN units is less than 1 ms, which is
comparable with that of the adversarially harden DNN. The
credibility analysis methodology adopted in this paper can
also be applied to other types of adversarial example attacks
and power grid applications.
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