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Identifying new sensing modalities for indoor localization is an interest of research. This paper studies powerline-induced
alternating magnetic field (AMF) that fills the indoor space for the orientation-aware three-dimensional (3D) simultaneous
localization and mapping (SLAM). While an existing study has adopted a uniaxial AMF sensor for SLAM in a plane surface,
the design falls short of addressing the vector field nature of AMF and is therefore susceptible to sensor orientation variations.
Moreover, although the higher spatial variability of AMF in comparison with indoor geomagnetism promotes location sensing
resolution, extra SLAM algorithm designs are needed to achieve robustness to trajectory deviations from the constructed
map. To address the above issues, we design a new triaxial AMF sensor and a new SLAM algorithm that constructs a 3D
AMF intensity map regularized and augmented by a Gaussian process. The triaxial sensor’s orientation estimation is free
of the error accumulation problem faced by inertial sensing. From extensive evaluation in eight indoor environments, our
AMF-based 3D SLAM achieves sub-1m to 3m median localization errors in spaces of up to 500m2, sub-2° mean error in
orientation sensing, and outperforms the SLAM systems based on Wi-Fi, geomagnetism, and uniaxial AMF by more than 30%.
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1 INTRODUCTION
Simultaneous localization and mapping (SLAM) is the task of constructing a map of an unknown environment
using a mobile device’s measurement trace while simultaneously keeping track of the mobile’s location within
the environment. Recent SLAM systems adopt the GraphSLAM formulation [14] that integrates odometry and a
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sensing modality producing location-dependent measurements. The performance of SLAM is largely affected by
the location discriminability of the used sensing modality. In the last decade, various sensing modalities have
been exploited for indoor SLAM, including vision [29], Wi-Fi [1, 13, 23, 46, 50, 54], geomagnetic field (GMF)
[22, 51], and lidar [24]. However, these modalities may have reduced location sensing capabilities when their
limiting factors take effect. For example, visual sensing suffers from poor illumination; Wi-Fi received signal
strength (RSS) can be affected by automatic gain control and multipath fading; Wi-Fi channel state information
(CSI)-based sensing [57] requires labor-intensive data collection and labeling as well as high processing capability
due to the high-dimensional nature of CSI data; lidar is susceptible to blockage and can be fooled by glass walls.
Thus, identifying new sensing modalities for SLAM has been an interest of research.

Power distribution networks supplying alternating current (ac) electricity have deeply penetrated into built
environments. The currents flowing in the powerlines distributed in the building induce an alternating magnetic
field (AMF) that oscillates at the mains frequency (i.e., 50 or 60Hz). These powerlines include the backbone
electricity cables running in the building infrastructure. The AMF can further induce ac noises in the circuits of
consumer electronics, which are called mains hums and often suppressed by built-in hardware filters. Research
has attempted to exploit the mains hum for time-related system functions. The studies [25, 41] design resonant
antenna-based sensors to capture the mains hum and exploit its temporal properties, i.e., synchronous periodicity
[41] and periodicity imperfection [25], to achieve clock calibration and synchronization. In contrast to exploiting
the temporal properties of AMF, this paper aims at exploiting the spatial properties of AMF for SLAM.

AMF is a three-dimensional (3D) vector field. A snapshot of the AMF at a certain time instant can be formally
described as ®𝐹 (x) ∈ R3, where x ∈ R3 represents a location in the 3D Euclidean space. Essentially, AMF is the
sum of the low-frequency magnetic fields induced by all powerlines in the building. Similar to AMF, the GMF and
the Wi-Fi infrastructures also provide the respective fields that fill the entire 3D space, which have been exploited
for SLAM. As temporal volatility and spatial variability of the field are important factors for location sensing, we
discuss these properties of AMF in comparison with GMF and Wi-Fi. In particular, we focus on the Wi-Fi RSS
among Wi-Fi based methods, as it is a more common choice for SLAM systems in practical applications. Note
that Wi-Fi RSS has advantages over Wi-Fi CSI in terms of availability from Wi-Fi chip products, implementation
complexity and robustness to small dynamics in the environment [17].
First, temporal volatility is a destructive factor for location sensing. Due to Wi-Fi’s short wavelength, its

propagation can be easily affected by the movements of human bodies. Multipath fading makes Wi-Fi RSS volatile.
In contrast, AMF is stable over time, because the AMF magnitude at a location is determined by the overall power
loading of the building, rather than the operation status of a single appliance unless measured in its proximity. In
addition, as AMF is a Super Low Frequency (SLF) source with a very long wavelength, its propagation is not
affected by small objects such as human bodies. From our measurements, Wi-Fi RSS’s temporal volatility is 7x to
20x higher than AMF.

Second, spatial variability is a constructive factor for location sensing. AMF has higher spatial variability than
GMF. Indoor GMF is a static vector field perturbed by the building’s structural steels, where the perturbations are
exploited to learn and infer location information. However, due to the massive scale of the steels, the perturbations
offer limited spatial resolutions. As such, GMF-based location sensing can achieve 2m-4m accuracy only. This
low discernibility problem can affect the performance of using GMF-based maps for indoor localization [34].
Differently, AMF is induced by powerlines that are sparser in spatial distribution and less bulky in space occupancy
compared with the building’s structural steels. From our measurements, AMF’s spatial variability is more than
twice of GMF’s.
However, AMF’s 3D vector field nature and higher spatial variability present two challenges to the design

of a robust AMF SLAM system. First, a new triaxial AMF sensor is needed. The existing uniaxial AMF sensor
setup used in [25, 41], which suffices for timing, is ill-suited for location sensing. Specifically, the uniaxial
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(a) Field with low spatial variabil-
ity

(b) Field with high spatial variabil-
ity

Fig. 1. Higher spatial variability challenges robustness of the map
constructed for the movement trajectory only. The cross represents
the location of the mobile to be localized; dots represent the in-
map locations with the same field intensity value as the mobile, i.e.,
candidate locations of the in-map localization.

Fig. 2. Uriaxial and tri-
axial AMF sensors.

Fig. 3. Triaxial AMF sen-
sor arrangements.

sensor at location x only captures the projection of ®𝐹 (x) onto the axis of the sensor. As a result, the AMF
intensity measurement depends on the sensor orientation. Deviation of sensor orientation leads to location
sensing errors. Integrating three uniaxial AMF sensors to form a triaxial sensor is a non-trivial task since their
physical arrangement highly affects the measurements. In particular, the ac current in the resonant antenna of a
uniaxial sensor induced by the AMF for measurement creates a secondary AMF that interferes with the other two
uniaxial sensors. The arrangement of three uniaxial sensor components needs to minimize this inter-component
interference. This requires conducting design experiments to decide the separation distances of the three resonant
antennas. Moreover, the spatial arrangement of the sensor should be simple and compact, making the sensor
easily assembled and integrated with the mobile platform for the SLAM and localization tasks. Therefore, properly
arranging the three uniaxial sensor components to minimize the inter-component interference while maintaining
a satisfactory form factor requires fine considerations and extensive experimentation.

Second, AMF’s higher spatial variability, although enabling discrimination of closer locations, challenges the
robustness of the constructed map. Most SLAM designs only construct the map along the trajectory of the mobile
and does not provide an estimate of the signal for a location x′ in the proximity of the trajectory [1, 11, 30]. While
this approach suffices for the fields with low spatial variability (e.g., GMF), it may have degraded performance for
fields with high spatial variability (e.g., AMF). In GMF, as the signal at x′ is similar to that at an in-map location x
closest to x′, the mobile at x′ during the localization phase can still be localized to an in-map location close to x.
Differently, in AMF, due to higher spatial variability, the signal at x′ is more different from that at x. As a result,
the localization result for the mobile at x′ is more unpredictable. This is illustrated in Fig. 1, in which the field
with high spatial variability suggests candidate locations (represented by solid dots) far away from the mobile’s
true location (represented by the cross).

To address the above two robustness challenges, in this paper, we make the following two new designs. First,
we design a triaxial AMF sensor that integrates three resonant antennas arranged in three orthogonal orientations.
We conduct design experiments to decide the separation distances of the three resonant antennas to avoid mutual
interference. As such, the sensor can measure the AMF in three orientations simultaneously. Compared with the
uniaxial sensor used in [25, 41], the triaxial sensor’s AMF intensity measurement is less susceptible to sensor
orientation. Second, we employ the Gaussian process (GP) [43] to model AMF and integrate it into GraphSLAM
as a regularization term. The GP adopts a kernel function to describe the distance-based prior correlation between
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the field intensities at any two locations. With the available AMF intensity measurements on the reconstructed
trajectory, the posterior distribution of the AMF intensity at any location out of the trajectory can be updated to
have less uncertainty. Localization based on the GP-augmented map is more robust to trajectory deviations.
In addition, as the AMF vector at a certain location is stable over time, we may estimate the orientation

variation of the triaxial sensor when it re-visits a location by jointly processing the triaxial readings collected on
the original visit and the re-visit. This orientation variation estimation is free of the error accumulation problem
faced by the inertial sensing-based odometry.
To evaluate the performance of our AMF-based orientation-aware 3D SLAM system, we use a mobile plat-

form that integrates a wheel-based robot and a six-degree-of-freedom (6DoF) robotic arm to carry the triaxial
AMF sensor. We drive the mobile platform to form 3D trajectories with orientation variations in eight indoor
environments. We evaluate the mapping and localization accuracy of our system with respect to the known
ground-truth trajectories and orientations that are derived from the prescribed movements of the robot and the
arm. As baselines, we use the same setup to evaluate the SLAM systems based on Wi-Fi RSS, GMF, and uniaxial
AMF sensing without GP regularization and augmentation.

The contributions of this paper include:

• We design a new triaxial AMF sensor and conduct measurements using the sensor to understand the
temporal volatility, spatial variability, and orientation property of AMF, in comparison with Wi-Fi RSS and
GMF.

• We design AMF-based orientation-aware 3D SLAM that constructs the AMF map in the target 3D space
with GP regularization. The AMF intensity map is also augmented with GP to accommodate the deviations
of the mobile’s trajectory from the map during the localization phase.

• Evaluation in eight environments shows that our system achieves sub-1m to 3m median localization errors
in spaces of up to 500m2, sub-2° mean error in orientation sensing, and outperforms those based on Wi-Fi
RSS, geomagnetism, and uniaxial AMF by more than 30%.

The rest of this paper is organized as follows. §2 reviews related work. §3 presents the design of the triaxial
AMF sensor and a measurement study using the designed sensor to understand AMF. §4 presents the design of
AMF SLAM. §5 presents experiment results. §7 concludes this paper.

2 RELATED WORK
Building’s powerline infrastructure has been exploited for mobile sensing, communication. Powerline communi-
cation (PLC) [58] products have been widely available on the market. As mentioned in §1, the studies [25, 41]
exploit AMF from powerlines for sensor clock calibration and synchronization. The studies [55, 56] exploit the
interactions between powerlines’ low-frequency electrostatic field and human body to achieve clock synchro-
nization and device authentication of wearable devices. A recent study [59] uses the powerline infrastructure as
a wired medium to read backscatter tags attached to the walls with powerlines right behind them. The study [38]
proposes PLP that uses the power network as antenna to emit modulated wireless signals in two frequencies
to localize a mobile receiver. The study [45] extends PLP to use more frequencies to mitigate the aging issue of
the location fingerprints captured by the mobile receiver. These two studies [38, 45] apply two power socket
plugs to inject the modulated signals into the powerlines and achieve room-level localization. The authors of [27]
analyze how PLC systems can be employed to build powerline positioning (PLP) systems. They categorize and
discuss three main PLP system architectures depending on whether the system uses specific infrastructure to
produce reference positioning signals and whether the target actively collects information to estimate its position.
This paper does not employ signal emitters and just uses the low-frequency AMF induced by the powerlines to
achieve fine-grained indoor mapping and localization.
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The prior work [28] uses a resonate antenna-based uniaxial AMF sensor to design a SLAM system. It achieves
mean localization accuracy of 1.59m in a lab space and 3.93m in an office building. However, it has the following
limitations. First, the uniaxial sensor used in [28] falls short of addressing AMF’s nature of 3D vector field. With a
uniaxial AMF sensor, the SLAM system is restricted to the scenario where the sensor must be in a fixed orientation
when it (re)visits a location. Deviation of sensor orientation can lead to errors of GraphSLAM’s loop closure
detection during the mapping phase and inaccurate map matching during the localization phase. Second, the
design in [28] only constructs the AMF map along the mobile device’s movement trajectory. The map does not
provide the AMF estimate for any location in the proximity of the trajectory. As discussed in §1, while this design
suffices for the fields with lower spatial variability such as GMF, it may have degraded performance for fields with
higher spatial variability such as AMF in the presence of trajectory deviations. Differently, this paper does not
employ signal emitters and just uses the low-frequency AMF induced by the powerlines to achieve fine-grained
indoor mapping and localization. Third, the uniaxial AMF sensor does not have orientation sensing capability. In
this paper, we advance the state of the art by designing a new orientation-aware AMF-based 3D SLAM system
that addresses AMF’s nature of 3D vector field and property of higher spatial variability and provides orientation
estimation. The evaluation shows that our new design outperforms that in [28] by up to 31.6% and 30.5% in
terms of localization accuracy in the absence and presence of trajectory deviations. Our results improve the
understanding of the location and orientation information that can be harnessed from powerline AMF.

Indoor SLAM has been studied extensively. First, we discuss the existing indoor SLAM solutions according to
their used sensing modalities. Radar SLAM [30] and lidar SLAM [11] are based on the point clouds generated by
radar and lidar. Visual SLAM [29] uses the camera to capture images for landmark detection and map construction.
However, the sensing based on radar, lidar, and camera is susceptible to blockages. The limitations of GMF SLAM
[53] and Wi-Fi RSS SLAM [1, 13] have been discussed earlier. While Wi-Fi CSI has not been widely applied to
SLAM due to its heavy computation burden, in indoor localization tasks, decimeter-level localization accuracy
can be achieved with Wi-Fi CSI from the multiple-input multiple-output (MIMO) Wi-Fi devices. Chronos [50]
first achieves the decimeter-level localization accuracy with CSI obtained from multiple frequency channels.
As the localization accuracy depends on the number of channels monitored by the access point, this approach
suffers from large localization delays and localization accuracy drops when the indoor environment lacks enough
free channels. EasiTrack [54] uses a MIMO Wi-Fi device and an inertial measurement unit (IMU) to collect
multipath CSI and orientation data. However, the CSI phase information is not always available, limiting the
application scope of EasiTrack. More recent works use deep learning to learn from labeled Wi-Fi CSI data for
indoor navigation and target tracking. In [2], the proposed indoor navigation approach builds the CSI heatmap
to localize the target with sub-meter accuracy. However, it requires laborious efforts for map building. The
work in [10] uses Wi-Fi CSI data from various positions and during motions to train a machine learning model
for localization and target tracking in 3D indoor space. However, the model needs to be retrained when the
environment or motions are changed.

Acoustic SLAM [12] constructs a map based on the angles of arrival (AoAs) from multiple infrastructural sound
sources. However, the required infrastructure incurs deployment overhead. Differently, the AMFs exploited in
this paper are existing infrastructures of indoor spaces. Several SLAM solutions employ GP. The work [44] uses
GP as a regressor to derive the continuous occupancy grid map. The work [42] presents a lidar SLAM system that
employs a GP map reconstruction method to provide real-time low-drift state estimation and mapping for a robot.
The work [22] proposes a method to build a GMF GP by SLAM. The work [13] solves the Wi-Fi SLAM problem
using the GP latent variable model to determine the latent-space locations of unlabeled signal strength data.
Different from the above studies [13, 22, 42, 44] that integrate GP into the real-time SLAM implemented with
filters, this paper integrates GP into GraphSLAM and solves it offline with all odometry and AMF measurement
traces for a more accurate and efficient SLAM system. Specifically, the offline processing allows for global
optimization to generate a consistent map of the environment, which avoids the local minima situations faced by
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the online methods. Besides, solving the SLAM problem offline greatly reduces time and memory complexities
as it reduces the real-time map storage and data processing overheads. This can be particularly advantageous
when dealing with long trajectories and complex environments. Another new design in this paper is using GP to
generate an augmented map covering the nearby regions of the mobile’s trajectory to accommodate trajectory
deviations during the localization phase. This improves the localization robustness and enables more challenging
localization scenarios of the partially in-trajectory and out-trajectory localization. On the contrary, the SLAM
studies reviewed above only construct the map along the trajectory of the mobile and perform localization within
the map area. This leads to performance degradation, especially in highly variable fields (e.g. AMF).
SLAM has been studied in 3D space, where the SLAM system estimates trajectories in the reconstructed

3D environment. For indoor applications, the authors of [51] use the extended Kalman filter to formulate a
3D GMF-based SLAM aiming to efficiently compensate for drift from odometry measurements. The work [46]
introduces a multi-stage 3D SLAM system to localize IoT devices in a 3D indoor space based on Wi-Fi RSS. Except
for applications in general indoor spaces, 3D SLAM has also been studied for complex and human-inaccessible
environments. The studies in [35, 36] focus on the drilling machine in underground mines and introduce a pose
graph SLAM system using re-measurement of the GMF data sequences to predict the pose of the drilling machine.
The AMF-based SLAM can be applied in both normal and harsh environments for 3D mapping and localization
tasks without the limitations of low discernibility in GMF and unreliability in Wi-Fi RSS.

3 TRIAXIAL AMF SENSOR DESIGN AND MEASUREMENT STUDY
In this section, we present the preliminary on AMF. Then, we present the design of the triaxial AMF sensor.
Lastly, we present a measurement study to understand AMF’s properties.

3.1 Preliminary on Powerline-Induced AMF
A utility powerline has two emanations, i.e., alternating electric and magnetic fields, which are induced by
the powerline’s ac voltage and current, respectively. In indoor environments, the electric field can be easily
shielded or weakened by common materials, while the magnetic field can pass through most materials [32]. In
addition, the electric field from the powerline can be easily perturbed by other low-frequency electric fields such
as those caused by changes in charge carried by human bodies due to the triboelectric effect and capacitance
variations [8, 15]. Thus, this paper focuses on powerline-induced AMF. The AMFs induced by all sources can
be superimposed by the following vector addition to form a composite AMF that fills the entire indoor space.
Note that the electromagnetic propagation described by Maxwell’s theory is irrelevant in the current context,
as the alternating electric field induced by the AMF is extremely far away due to the long wavelength of the
propagation.

Powerline-induced AMF is from an existing electrical infrastructure, which is abundant indoors but often absent
or sparse outdoors. Outdoor overhead or underground powerlines are typically situated at large distances from
the user, resulting in diminishing AMF signals. Therefore, in this paper, we only consider indoor environments.

3.2 Design of Triaxial AMF Sensor
3.2.1 Hardware design and signal pre-processing. The mechanisms for measuring the low-frequency AMF and
the static magnetic field (e.g., GMF) are different. The latter can be measured via magnetism-driven mechanics,
which is the basis of the microelectromechanical system (MEMS) design of smartphones’ built-in GMF sensors.
In contrast, low-frequency AMF needs to be measured via the electromagnetic induction effect. However, as
discussed in §1, the inductively excited measurement circuit also creates a secondary AMF. Thus, a triaxial AMF
sensor of three independent measurement circuits needs to be carefully designed to avoid cross-axis interference.
There are off-the-shelf hand-held AMF meters [39] that are designed for detecting electromagnetic hot spots to
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Fig. 4. Impact of inter-component dis-
tance on measurement of sensor compo-
nent 𝑆2.

Fig. 5. Impact of the inter-component
distance on the triaxial arrangement at
six sites.

Fig. 6. STD of AMF intensity measured
by each setup rotated around a certain
axis of 𝑆1.

avoid unhealthy electromagnetic exposures. These meters are not designed to be highly frequency-selective –
they only provide the maximum value within a wide frequency range (e.g., 30 to 300Hz [39]).
Our triaxial AMF sensor consists of three mutually perpendicular uniaxial AMF sensor components, where

each is designed to detect the mains frequency in our region at 50Hz. The sensor outputs are first sampled
by the analog-to-digital converter (ADC) of an STM32 microcontroller at a rate of 1 kilo samples per second
(ksps) and then transferred to a Raspberry Pi (Rpi) single-board computer for storage and analysis. From the
measurements of a power monitor, the standby and operating powers of the triaxial AMF sensor are 1.06W and
1.13W, respectively, which are similar to the powers of Wi-Fi and ultra-wideband (UWB) radios [3].

Fig. 2b shows the configuration of the proposed triaxial sensor formed by three uniaxial sensor components.
The three sensor components (denoted by 𝑆1, 𝑆2, and 𝑆3) are separated by certain distances, while the centers of
their inductor coils are kept colinear. Specifically, as illustrated in Fig. 3b, the separation distances between 𝑆1
and 𝑆2 (denoted by 𝑑𝑠 ) and between 𝑆2 and 𝑆3 (denoted by 𝑑𝑠′ ) are determined by a set of experiments shortly
to avoid the mutual interference among them. The triaxial sensor applies the following software-based signal
pre-processing pipeline. First, it applies a filter with the passband of [49Hz, 51Hz] to each sensor component’s
sampled signal. Then, it computes the root mean square of each sensor component’s filtered signal as the signal
intensity. Let 𝑧𝑠1, 𝑧𝑠2, and 𝑧𝑠3 denote the signal intensities of the three uniaxial sensor components. The AMF
intensity, denoted by 𝑧, is computed as 𝑧 = 1

𝑧ref

√︃
𝑧2
𝑠1 + (𝜂2𝑧𝑠2)2 + (𝜂3𝑧𝑠3)2, where 𝜂2 and 𝜂3 are two calibration

coefficients, 𝑧ref is a normalization reference. The triaxial sensor returns (𝑧𝑠1, 𝑧𝑠2, 𝑧𝑠3, 𝑧) when queried. The reading
𝑧 is used to construct the 3D AMF intensity map and perform 3D localization; the triaxial readings 𝑧𝑠1, 𝑧𝑠2, 𝑧𝑠3
are used for orientation sensing. To deal with the hardware fabrication deviations, before the three sensor
components are integrated, we use 𝑆1 as the reference to determine 𝜂2 and 𝜂3. Specifically, we place each of them
sequentially at the same location to collect a data trace. With the three data traces, we determine 𝜂2 and 𝜂3 such
that 𝑧𝑠1 = 𝜂2𝑧𝑠2 = 𝜂3𝑧𝑠3. To determine 𝑧ref , we place the triaxial sensor close to a heavy-load electric appliance
and use the measurement

√︃
𝑧2
𝑠1 + (𝜂2𝑧𝑠2)2 + (𝜂3𝑧𝑠3)2 as 𝑧ref .

3.2.2 Sensor component separation. We conduct a set of experiments to determine 𝑑𝑠 and 𝑑𝑠′ . First, we fix 𝑆2 at a
certain location and record its calibrated reading (i.e., 𝜂2𝑧𝑠2) while 𝑆1 and 𝑆3 are off as the baseline. Denote this
baseline reading as 𝑏2. Then, we switch on 𝑆1 and adjust its location to vary 𝑑𝑠 . During this process, we monitor
|𝜂2𝑧𝑠2 − 𝑏2 |, which is referred to as the intensity difference. The curve labeled “S1” in Fig. 4 shows the intensity
difference versus 𝑑𝑠 , where the error bar represents the mean, minimum, and maximum over 10 measurements.
The intensity difference decreases with 𝑑𝑠 when 𝑑𝑠 is from 1 cm to 3 cm. When 𝑑𝑠 ≥ 3 cm, the intensity difference
becomes flatten and minimized. The non-zero intensity difference suggests the mutual interference between
𝑆1 and 𝑆2. This is because the ac currents in the resonating antenna and the AFE of a uniaxial AMF sensor
component also induce a secondary AMF that interferes with the ambient AMF. However, as this secondary AMF
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Fig. 7. Normalized AMF in-
tensity trace of sensor com-
ponents.

Fig. 8. Normalized AMF in-
tensity traces in 3 orienta-
tions.

Fig. 9. AMF’s and GMF’s relative difference traces versus (a)
the moving distance and (b) the Euclidean distance from the
starting point along a certain path in a lab space.

generated from the low-power sensor is rather weak, its impact on the ambient AMF attenuates quickly with the
distance from the sensor. We conduct a similar experiment in which we turn on 𝑆3 and monitor the intensity
difference measured by 𝑆2 when 𝑑𝑠′ varies. The result is shown by the curve labeled “S3” in Fig. 4. Similarly, when
𝑑𝑠′ ≥ 3 cm, the intensity difference becomes flatten and minimized. In the last experiment, we turn on both 𝑆1
and 𝑆3 and adjust 𝑑𝑠 and 𝑑𝑠′ while keeping 𝑑𝑠 = 𝑑𝑠′ . The intensity difference measured by 𝑆2 is shown by the
curve labeled “S1 & S3” in Fig. 4. The curve is higher than those with only 𝑆1 or 𝑆3 turned on, but not simply the
sum of the two curves, due to the cross-component inference. From the above results, we set 𝑑𝑠 = 𝑑𝑠′ = 3 cm to
minimize the components’ mutual inference.
We conduct the above experiment in six indoor environments to investigate whether 𝑑𝑠 = 𝑑𝑠′ = 3 cm is

a generalizable good setting. Fig. 5 shows the intensity difference versus 𝑑𝑠 , where we keep 𝑑𝑠′ = 𝑑𝑠 . In all
environments, the intensity difference becomes flatten and minimized when 𝑑𝑠 and 𝑑𝑠′ are greater than 3 cm.
This suggests that the setting of 𝑑𝑠 = 𝑑𝑠′ = 3 cm is good across various environments.

3.2.3 Effectiveness of triaxial design. We conduct experiments to compare our triaxial design with the uniaxial
sensor 𝑆1 and an alternative three-sensor design. As illustrated in Fig. 3a, in the alternative coplanar arrangement,
the three sensor components have the same orientation and identical separation distances of 5 cm to minimize
mutual inference. The comparison among the single uniaxial sensor and the three-sensor arrangements in Fig. 3a
and Fig. 3b help understand the contributions from the sensor number and orientation arrangement to the sensing
robustness. During the experiments, for each setup, we fix the position of 𝑆1 and rotate the sensor setup clockwise
around a certain axis of 𝑆1 with a step size of 30°. We use the standard deviation (STD) of the sensor setup’s
measurements during the whole rotation process to characterize the robustness of the sensor’s AMF measurement
to sensor orientation. Fig. 6 shows the STDs of the three setups rotated around the 𝑆1’s three axes. The uniaxial
sensor setup and our proposed triaxial setup yield the highest and lowest STD, respectively. The setup adopting
coplanar arrangement yields lower STD compared with the uniaxial sensor setup, as integrating three sensors’
measurements can reduce the impact of random measurement noises [49]. However, it is inferior to our proposed
triaxial setup that better addresses the vector field nature of AMF.

3.3 Measurement Study
We conduct extensive measurements to investigate the spatial, temporal, and orientation properties of AMF using
the triaxial AMF sensor. Sensor movements are implemented by a mobile platform with details described in §5.

3.3.1 Spatial variability. We collect AMF intensity data along a certain path in the horizontal plane of a lab
space hosting normal office appliances such as lights, air conditioners, computers, and printers. Fig. 7 shows the
normalized AMF intensity traces of the triaxial sensor and its three sensor components versus the movement
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(a) AMF intensity traces in lab
and residential spaces

(b) AMF intensity traces in a
residential space

(c) Wi-Fi RSS temporal varia-
tions.

(d) AMF intensity traces along
a path

Fig. 10. Temporal volatility of AMF and Wi-Fi RSS in lab and residential spaces. CV values in (a) are below 0.05. CV values of
the normalized Wi-Fi RSS at six access points in (c) are from 0.3323 to 0.5496.

distance along the path. The variations of the AMF intensity with the movement distance suggest the horizontal
variability of AMF. In addition, the vector field nature of AMF can be clearly seen, because the measured AMF
traces of the three sensor components are different from each other. We also investigate the vertical variability
of AMF. Specifically, we move a triaxial AMF sensor and a uniaxial AMF sensor vertically for three rounds,
respectively. In the first round, the sensor is kept horizontal. In the following two rounds, the sensor is rotated
by 90° clockwise and counterclockwise, respectively. The measured AMF intensity traces are shown in Fig. 8.
For both the triaxial and uniaxial sensors (labeled by “Tri” and “Uni” with subscript representing round index),
the AMF intensity changes with altitude. Compared with the uniaxial sensor’s traces in the three rounds, the
triaxial sensor’s traces are closer to each other. This echoes Fig. 6, where the triaxial sensor is more robust than
the uniaxial sensor to orientation variations.
Then, we compare the spatial variabilities of AMF measured by our triaxial sensor and GMF measured by a

smartphone. We record the AMF and GMF intensity traces simultaneously along a specific path in the lab space.
We compute the relative difference of any measured intensity 𝑧 with respect to the intensity at the starting point
(denoted by 𝑧𝑜 ) as |𝑧−𝑧𝑜 |

𝑧𝑜
× 100%. Fig. 9a shows the relative difference traces versus the moving distance along the

path. Fig. 9b visualizes the same data with the Euclidean distance from the starting point as the 𝑥 axis. AMF’s
relative differences are in general larger than that of GMF. We also compute the coefficient of variation (CV) of
the collected intensity data, which is the ratio of standard deviation and average value. AMF’s and GMF’s CVs
are 0.5013 and 0.2033. Thus, AMF’s spatial variability is more than twice of GMF’s spatial variability.

3.3.2 Temporal volatility. We investigate the temporal volatility of AMF under various environments and time
scales. We deploy four triaxial AMF sensors at different fixed locations to continuously collect AMF intensity
traces over 200 hours. The results are shown by the curves labeled with “Lab” in Fig. 10a. The measured AMF
intensity traces are stable over the entire measurement period. The CV values at the four sites are 0.0380, 0.0428,
0.0267, and 0.0390, respectively. We also measure the AMF intensity traces at four fixed locations in a residential
space over 120 hours. The results are shown by the curves labeled with “Resi” in Fig. 10a. The traces are also stable.
From Fig. 10a, the AMF intensities in the residential space are lower than those in the lab space. This is because the
powerlines in the lab space are denser. As residential spaces in general have different occupancy and power usage
status during the day time and night time, we particularly compare the AMF intensities measured during day
time (7am to 7pm) and night time (7pm to 7am). Specifically, a triaxial AMF sensor collects an intensity reading
every hour and computes the difference between a day-time measurement and its corresponding night-time
measurement taken 12 hours later. Fig. 10b shows this difference trace over three weeks, where an error bar
shows the average, maximum, and minimum values of the day-night difference in a day. The day-night differences
are very small, compared with the AMF intensities of about 0.5 as shown in Fig. 10a. This suggests that AMF is
temporally stable. As a baseline, we measure the temporal variability of Wi-Fi RSS using a smartphone in the lab
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(a) Water heater (b) Fluorescent light (c) Microwave (d) Refrigerator

(e) Computer (f) Television set (g) Three appliances (h) Five appliances

Fig. 11. Impact of electric appliances on AMF intensities measured at various distances from the appliances.

space over 24 hours. Fig. 10c shows the results. To compare the CV values with normalized AMF, we normalize
the Wi-Fi RSS data𝑤 using the maximum collected value of𝑤𝑚 as𝑤𝑛 = 𝑤/𝑤𝑚 . Then, the CVs of the normalized
Wi-Fi RSS𝑤𝑛 are from 0.3323 to 0.5496, which are 7x to 20x higher than the normalized AMF.

We also jointly investigate the spatial variability and temporal volatility. We record the AMF intensity trace
when the sensor moves along a path at two times separated by one month. Fig. 10d shows the two AMF intensity
traces, which are close. This shows that AMF intensity’s spatial distribution is stable over time, which is desirable
for SLAM.

Since ac currents in powerlines can change with the operating statuses of electric appliances, we conduct a set
of experiments to investigate the impact of the on/off operating statuses of one or more electric appliances on
the AMF intensity measurement when the sensor is at various distances from the appliance(s). The appliances
include a water heater, fluorescent light, microwave, refrigerator, computer, and television set. The results are
shown in Fig. 11. Specifically, from Fig. 11a to Fig. 11f, we can see that the operating statuses of a single appliance
generates little impact on the AMF measurements when the sensor-appliance distance is down to 15 cm. This
observation is still valid in Fig. 11g and Fig. 11h where we place multiple appliances together and switch them
on/off simultaneously. The reason for the above results is that the sensor measurement is dominated by the
superposition of the AMFs from all powerlines in the building. This also explains the good temporal stability
over many days as presented earlier.

3.3.3 Effectiveness of GP modeling. We conduct an experiment to show that GP-based spatial interpolation for
AMF outperforms other interpolation methods. To our best knowledge, this is the first in-depth analysis of the
effectiveness of GP for modeling powerline-induced 3D AMF with real data.
The prior distribution of a GP is characterized by a mean function 𝑚(x) ∈ R and a covariance function

𝑘 (x𝑖 , x𝑗 ) ∈ R, where x ∈ R3, x𝑖 ∈ R3, and x𝑗 ∈ R3 represent locations. The𝑚(x) represents the prior mean of the
AMF intensity at x; the 𝑘 (x𝑖 , x𝑗 ) represents the covariance between the AMF intensities at x𝑖 and x𝑗 . Due to the
lack of prior knowledge about AMF distribution, we adopt𝑚(x) = 0. We adopt a covariance function employed
for ambient magnetic fields [44]: 𝑘 (x𝑖 , x𝑗 ) = 𝜎2

𝑘
· exp

(
−1
2·𝑙2

𝑘

∥x𝑖 − x𝑗 ∥22
)
, where 𝜎2

𝑘
is the prior variance and 𝑙𝑘 is

the length scale. The 𝜎2
𝑘
and 𝑙𝑘 jointly determine correlation strength. From the above model, the AMF intensity

measurements at a set of 𝑛 locations {x1, x2, . . . , x𝑛}, denoted by z = {𝑧1, 𝑧2, . . . , 𝑧𝑛}, follow the multivariate
normal distribution: z ∼ N(0,K + 𝜎2

𝑚I), where I ∈ R𝑛×𝑛 is the identity matrix, the (𝑖, 𝑗)th element of the matrix
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(a) AMF intensity measure-
ments in a 0.4 × 0.4 × 0.4m3

3D space

(b) The posterior mean of GP
based on the measurements
in (a)

(c) The posterior variance of
GP based on the measure-
ments in (a)

(d) The normalized mean
square error (NMSE) of var-
ious interpolation methods.

Fig. 12. Visualization of GP-based spatial interpolation; NMSE achieved by various interpolation methods to fit AMF.

K ∈ R𝑛×𝑛 is given by K𝑖, 𝑗 = 𝑘 (x𝑖 , x𝑗 ), and 𝜎2
𝑚 is the variance of the AMF sensor’s measurement noise. After

obtaining an observation of z (denoted by z̃), from the Bayes theorem, for any arbitrary location x, the AMF
intensity at x (denoted by 𝑧x) follows the posterior distribution of 𝑧x ∼ N(𝜇x, 𝜎2

x), where

𝜇x=k⊺ (K+𝜎2
𝑚I)−1𝑍, 𝜎2

x =𝜎
2
𝑘
−k⊺ (K+𝜎2

𝑚I)−1k, (1)
and k = [𝑘 (x, x1), 𝑘 (x, x2), . . . , 𝑘 (x, x𝑛)]⊺ . In other words, with z̃, we can predict the AMF intensity at x as 𝜇x
with an uncertainty level characterized by 𝜎2

x . Therefore, with AMF intensity measurements at finite locations,
the measurements and the posterior distributions at all locations form a GP-augmented AMF. The GP model
requires three hyperparameters 𝜎𝑘 , 𝑙𝑘 , and 𝜎𝑚 , which can be estimated by the maximum likelihood estimation
approach with training data [16].

We conduct measurements to visualize the GP-augmented AMF. The 6DoF robotic arm carries a triaxial AMF
sensor to take measurements in a 0.4 × 0.4 × 0.4m3 cubic space. As the robotic arm control software provides the
arm’s real-time location, we can obtain the location of the AMF sensor during the process. Prior to this experiment,
we estimate 𝜎2

𝑚 using data collected at a fixed location. Fig. 12a shows the AMF intensity measurements collected
at 125 locations. We estimate the hyperparameters 𝜎𝑘 and 𝑙𝑘 using the measurements and the associated locations.
Then, we apply Eq. (1) to generate a GP-augmented AMF at dense locations in the cubic space. Figs. 12b and 12c
show the GP’s posterior mean and variance. The GP’s posterior mean provides a smooth and quasi-continuous
estimation of the AMF intensity.

We compare the GP augmentation with several other interpolation methods, i.e., nearest neighbor, linear, and
spline. We reserve the measurements at 20 locations randomly selected from the 125 locations shown in Fig. 12a
as the testing data. Then, we feed the measurements at the remaining 105 locations to the various interpolation
methods to predict the measurements at the 20 locations. Fig. 12d shows the normalized mean square error
(NMSE) of the predicted values using each interpolation method. NMSE is the ratio of the mean square error and
the mean of the true values. GP augmentation achieves the lowest NMSE. This suggests that GP characterizes the
AMF more effectively.

3.3.4 Angular stability of AMF. We assume that the angle of the AMF vector at a certain location is fixed,
which is the basis for estimating the orientation variation when the triaxial AMF sensor re-visits the location.
We conduct measurements to verify the assumption. Denote by (𝑧𝑠1, 𝑧𝑠2, 𝑧𝑠3) and (𝑧′𝑠1, 𝑧′𝑠2, 𝑧′𝑠3) the readings of
the triaxial AMF sensor when it is at a certain position but oriented to two different directions. Denote by
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Fig. 13. Approach overview. Fig. 14. GraphSLAM representation.

(𝛼, 𝛽,𝛾) the angular difference between the local coordinate systems of the sensor in the two orientations.
Specifically, the second coordinate system is obtained by rotating the first coordinate system around its third,
second, and first axes sequentially for 𝛼 , 𝛽 , and 𝛾 degrees. If the assumption holds, we have [𝑧𝑠1, 𝜂2𝑧𝑠2, 𝜂3𝑧𝑠3]⊺ =
𝑅(𝛼, 𝛽,𝛾) [𝑧′𝑠1, 𝜂2𝑧′𝑠2, 𝜂3𝑧′𝑠3]⊺ , where the detailed expression of the rotation matrix 𝑅(𝛼, 𝛽,𝛾) ∈ R3×3 can be found in
[18]. In our measurements, we fix the location of the triaxial AMF sensor and rotate it along each axis by different
angles for multiple times. Then, we calculate the AMF intensity for each rotation. The AMF intensity remains
almost constant with a standard deviation of 0.0117 over nine orientations. This suggests that the AMF vector
has rotational invariance [7, 31] and conforms to the rotation matrix relationship. We also examine the stability
of the measurement trace in each axis when the sensor is placed at a fixed location with a fixed orientation over
a long time. For the trace labeled “ResiP1” in Fig. 10a, the standard deviations in the three axes are 0.0255, 0.0302
and 0.0197. This suggests that the angle of the AMF vector at a certain location is stable over time.

4 GP-ASSISTED SLAM IN AMF
This section designs the GP-assisted orientation-aware 3D SLAM in 3D AMF. §4.1 overviews the approach. §4.2
and §4.3 present GraphSLAM, localization and orientation sensing.

4.1 Approach Overview for Location SLAM
Fig. 13 shows the algorithm blocks of the approach. We assume that the mobile has triaxial AMF sensing and
odometry capabilities. We do not assume a specific odometry mechanism. For instance, on a wheel-based robot,
odometry can be achieved by monitoring the wheel rotation and steering; on a flying drone, odometry can be
achieved by dead reckoning with accelerometer and gyroscope data. Most odometry mechanisms are subject
to the problem of error accumulation over long run [4]. Thus, odometry alone is insufficient for the accurate
reconstruction of long-run movement trajectory. The mobile continuously collects the AMF data, applies the
pipeline of signal pre-processing presented in §3.2 to produce the AMF intensity trace, and segments the trace
into sequences with the length identical to the sampling interval of the odometry. In what follows, we present an
overview of the two main components of the proposed approach, i.e., GraphSLAM and localization.

We adopt GraphSLAM, a widely used technique in robotics, to reconstruct the mobile’s trajectory and generate a
GP-augmented AMF map. GraphSLAM can be formulated as a non-linear least squares problem. The GraphSLAM
component consists of the following three algorithm modules. (1) The loop closure detection module identifies the
revisited locations in terms of AMF intensity. The detected loop closures provide important information to rectify
the long-run drifts of odometry. (2) The graph construction module uses the kinematic model on the odometry
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data, the GP model on the AMF intensity data, as well as the loop closures to build the graph structure. (3) The
graph optimization module finds the optimal graph by minimizing the regularization cost jointly defined from
the kinematic model, GP model, and the identified loop closures. Then, the movement trajectory can be derived
from the optimal graph. Lastly, the GP-augmented AMF map is formed by tagging AMF intensity data onto the
reconstructed trajectory and updating the GP posteriors for the locations not visited.

After the GP-augmented AMFmap is constructed, a mobile can be localized by matching the captured odometry
and AMF intensity sequences with the map. Note that we use the AMF intensity sequence during movement
rather than a single AMF intensity sample for localization. This is because that multiple locations in the map
may have similar AMF intensity values that cause ambiguity. Using a sequence for matching largely reduces the
chance of ambiguity. The matching minimizes the regularization cost jointly defined from the kinematic model
and the posteriors in the GP-augmented AMF map.

4.2 GP-Assisted GraphSLAM
In this section, we use 𝑡 ∈ Z to denote the discrete time step index. Suppose there are a total of 𝑛 time steps for
SLAM, i.e., 𝑡 ∈ [1, 𝑛]. In what follows, we describe the details of the three algorithm modules.

4.2.1 Loop closure detection. Loop closure detection determines whether a given location is revisited by the
mobile based on AMF intensity. A loop closure pair (𝑖, 𝑗) contains two time step indexes 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑛]
(𝑖 < 𝑗 ), at which the mobile visits the same location. Denote by C the set of all detected loop closure pairs.

Our loop closure detection is based on an AMF intensity sequence consisting of multiple consecutive AMF
intensity measurements instead of a single AMF intensity measurement, to reduce the false positives caused
by the aforementioned ambiguity problem. Specifically, at each time step 𝑡 , the AMF intensity measurement
sequence of length 𝑙 obtained in the time duration [𝑡 − 𝑙 + 1, 𝑡] is matched against a sliding window of length 𝑙 in
the historical trace over the time duration [1, 𝑡 − 1] in terms of Euclidean distance. When the Euclidean distance
is smaller than a threshold 𝜏 , the two corresponding sequences are marked as loop closure candidates. We apply
the following further checks on the loop closure candidates, aiming at eliminating all false positives. First, by
checking the timestamps, the candidate pairs with short time spans between the pair members are excluded to
avoid creating too brief loops that tend to be false positives. Then, for all candidate pairs involving the same
location (e.g., {(𝑖, 𝑗1), (𝑖, 𝑗2), (𝑖, 𝑗3)}), the remaining locations (i.e., 𝑗1, 𝑗2, and 𝑗3 in the above example) should have
AMF intensity sequences similar to each other. Thus, we check the Euclidean distances among the remaining
locations’ AMF intensity sequences and pass the candidate pairs only when the Euclidean distances are all smaller
than a threshold 𝜏 . In §5.2, we determine the setting of 𝜏 via experiments.

4.2.2 Graph construction. As illustrated in Fig. 14, the GraphSLAM formulation can be represented by a graph
of relationships between states (i.e., locations) and observations (i.e., odometry and AMF measurements). The
objective of GraphSLAM is to estimate the trajectory X = {x𝑡 |𝑡 ∈ [1, 𝑛]} based on the observation trace
{𝑧𝑡 , u𝑡 |𝑡 ∈ [1, 𝑛]} to minimize the regularization costs arising from the odometry and AMF sensing that are
represented by the edges in the graph. The regularization is derived from the kinematic, loop closure, and GP
models. The are described as follows.

Kinematic model regularization. The odometry measurement u𝑡 that connects x𝑡−1 and x𝑡 records the relative
displacement in postion and orientation of the mobile from time 𝑡 − 1 to 𝑡 . This state transition is governed by
the kinematic model of the odometry, which can be abstracted as x𝑡 = ℎ𝑜 (x𝑡−1, u𝑡 ). The detailed closed-form
expression of the kinematic model ℎ𝑜 (·) depends on the specific odometry mechanism. Specific 3D kinematic
model examples can be found in [5, 47]. For a time step 𝑡 , we use the Euclidean distance ∥ℎ𝑜 (x𝑡−1, u𝑡 ) − x𝑡 ∥ℓ2 to
characterize the compliance with the kinematic model. For the whole trajectory, we use the following sum of
squares to characterize the overall compliance with the kinematic model:

∑𝑛
𝑡=2 ∥ℎ𝑜 (x𝑡−1, u𝑡 ) − x𝑡 ∥2ℓ2 .
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Algorithm 1 Graph optimization of GP-assisted SLAM
Input: Odometry data trace {u𝑡 |𝑡 ∈ [1, 𝑛]}, AMF intensity trace {𝑧𝑡 |𝑡 ∈ [1, 𝑛]}, loop closure pairs C
Output: Reconstructed trajectory X∗ = {x∗1, . . . , x∗𝑛}, and the GP-augmented map {(x, 𝜇x) |∀x}
1: Compute trajectory XNoGP using Eq. (2)
2: Determine the search space Ω =

⋃𝑛
𝑡=1 Ω𝑡 in the proximity of XNoGP using Eq. (3)

3: Compute GP posterior mean 𝜇x for every location x ∈ Ω using Eq. (1)
4: Compute the optimal trajectory X∗ in the searching space Ω using Eq. (4)
5: Generate the GP-augmented map {(x, 𝜇x) |∀x} with the data {(x𝑡 , 𝑧𝑡 ) |𝑡 ∈ [1, 𝑛]} using Eq. (1)
6: Return X∗ and GP-augmented map

Loop closure regularization. We use 𝑘 consecutive odometry measurements recursively on the kinematic model
by ℎ𝑜 (x𝑡−1, u𝑡 , u𝑡+1, . . . , u𝑡+𝑘 ) = ℎ0 (ℎ0 (. . . , (ℎ0 (x𝑡−1, u𝑡 ), u𝑡+1), ...), u𝑡+𝑘 ), which gives x𝑡+𝑘 . With the loop closure
detection result C, i.e., the set of all detected loop closure pairs, we use the following term to characterize the
inconsistency between the odometry result and loop closure detection result:

∑
∀(𝑖, 𝑗 ) ∈C ∥ℎ𝑜 (x𝑖 , u𝑖+1, u𝑖+2, . . . , u𝑗 ) −

x𝑗 ∥2ℓ2 . For the illustration shown in Fig. 14, the locations x0 and x4 form a loop closure. Thus, C = {(0, 4)}.
GP model regularization. Prior to SLAM, the GP hyperparameters (i.e., 𝜎𝑘 , 𝑙𝑘 , and 𝜎𝑚) are obtained. With all the

measured AMF intensities {𝑧𝑡 |𝑡 ∈ [1, 𝑛]} at the locations {x𝑡 |𝑡 ∈ [1, 𝑛]}, we use Eq. (1) to compute the posterior
distributions of the AMF intensities characterized by the following posterior mean vector and covariance matrix:
𝝁X = [𝜇x1 , 𝜇x2 , . . . , 𝜇x𝑛 ]⊺ and ΣX = diag(𝜎2

x1 , 𝜎
2
x2 , . . . , 𝜎

2
x𝑛 ). For a location x, we can use the Euclidean distance

∥𝜇x−𝑧x∥ℓ2 to characterize the compliance with the GP posterior. For the whole trajectory, we can use the following
sum of squares to characterize the overall compliance with the GP posteriors:

∑𝑛
𝑡=1 ∥𝜇x𝑡 − 𝑧x𝑡 ∥2ℓ2 .

4.2.3 Graph optimization. By minimizing the sum of the regularization costs from the kinematic, loop closure,
and GP models, GraphSLAM obtains a globally consistent estimation of the trajectory. The procedure of the
graph optimization is presented in Algorithm 1. It starts from the initialization chaining together the kinematic
model and the loop closures. Specifically, we compute a trajectory XNoGP using the conventional GraphSLAM
problem that does not involve GP:

XNoGP = argmin
X={x1,...,x𝑛 }

𝑛∑︁
𝑡=2

∥ℎ𝑜 (x𝑡−1, u𝑡 ) − x𝑡 ∥2ℓ2 +
∑︁

∀(𝑖, 𝑗 ) ∈C
∥ℎ𝑜 (x𝑖 , u𝑖+1, u𝑖+2, . . . , u𝑗 ) − x𝑗 ∥2ℓ2 . (2)

Based on the trajectory XNoGP, we aim to find a further optimized trajectory X∗ that jointly considers the
kinematic, loop closure, and GP regularization. To reduce the computation overhead, we limit the search space
for X∗ to the proximity of XNoGP. The rationale of this limitation is that the GP model has increased uncertainties
for the locations far away from the locations with measurements. We illustrate this with real measurements.
Specifically, taking a reference point in 3D space, we collect AMF measurements at locations with various
distances in the covariance function’s length scale 𝑙𝑘 from this reference point. Then, we calculate the relative
error between the real measurements and the GP’s posterior means at these measured locations. Fig. 15 shows the
results. We can see an increasing trend of the relative error. In our graph optimization implementation, we search
for the new locations for X∗ within 1.5𝑙𝑘 from the locations in XNoGP. The search space is Ω =

⋃𝑛
𝑡=1 Ω𝑡 , where

Ω𝑡 = {x′𝑡 |∥x′𝑡−x𝑡 ∥ℓ2 ≤ 1.5𝑙𝑘 , x𝑡 ∈XNoGP,∀x′𝑡 ∈ R3}. (3)

The GP’s posterior mean 𝜇x for the location x ∈ Ω is computed using Eq. (1). Then, by minimizing the overall
regularization cost from the kinematic, loop closure, and GP models, the further optimized trajectory X∗ =

{x∗1, . . . , x∗𝑛} is computed by:
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Fig. 15. Relative error of the GP’s posterior
means at locations with distances in covariance
function’s length scale 𝑙𝑘 from a measurement
point in the AMF.

Fig. 16. Reconstructed trajectories without and
with the GP regularization. The corresponding
mean square errors are 0.37m and 0.29m, re-
spectively.

Fig. 17. Mobile platform

X∗=argmin
X={x1,...,x𝑛 },
x𝑡 ∈Ω𝑡 ,𝑡=1,...,𝑛

𝑛∑︁
𝑡=2

∥ℎ𝑜 (x𝑡−1, u𝑡 )−x𝑡 ∥2ℓ2+
𝑛∑︁
𝑡=1

∥𝜇x𝑡−𝑧𝑡 ∥2ℓ2 +
∑︁

∀(𝑖, 𝑗 ) ∈C
∥ℎ𝑜 (x𝑖 , u𝑖+1, u𝑖+2, . . . , u𝑗 )−x𝑗 ∥2ℓ2 . (4)

Essentially, Eq. (4) is a nonlinear least squares problem, which can be solved iteratively by the Levenberg
Marquardt method [40]. Lastly, with the reconstructed map {(x∗𝑡 , 𝑧𝑖 ) |𝑡 ∈ [1, 𝑛]}, this module computes the GP
posteriors for all locations using Eq. (1), forming the GP-augmented map.

Now, we use an example to illustrate the benefit brought by the GP model regularization. We move a triaxial
AMF sensor along a trajectory in the 3D space by using the aforementioned mobile platform. The ground-truth
trajectory is shown by the black straight line segments in Fig. 16. The red curve is the reconstructed trajectory
XNoGP given by Eq. (2), whereas the green curve is the X∗ given by Eq. (4). The mean square errors (MSEs) of
XNoGP and X∗ from the ground truth are 0.37m and 0.29m, respectively. Thus, owning to the GP regularization,
the trajectory reconstruction accuracy is improved by about 22%.

4.3 Localization and Orientation Sensing
During the localization phase, given a measurement sequence over𝑚 consecutive time steps as {𝑧𝑡 , u𝑡 |𝑡 ∈ [1,𝑚]}
and the GP-augmented map {(x, 𝜇x) |∀x}, the movement trajectory X̂ = {x̂1, . . . , x̂𝑚} can be estimated by solving
X̂ = argminX={x1,...,x𝑚 }

∑𝑚
𝑡=2 ∥ℎ𝑜 (x𝑡−1, u𝑡 ) − x𝑡 ∥2ℓ2 +

∑𝑚
𝑡=1 ∥𝜇x𝑡 − 𝑧𝑡 ∥2ℓ2 .

Given two AMF readings (𝑧𝑠1, 𝑧𝑠2, 𝑧𝑠3) and (𝑧′𝑠1, 𝑧′𝑠2, 𝑧′𝑠3) collected at the same location, where the location
is determined by GraphSLAM or localization, the AMF sensor rotation angle (𝛼, 𝛽,𝛾) can be solved from the
rotation equation presented in §3.3 using the technique from [18]. We can use the odometry-based orientation
sensing result when the mobile visits the location for the first time as the base orientation and the rotation angles
estimated from AMF readings to derive the orientations for all the subsequent re-visits. Our results in §5.2 show
that this AMF-based orientation sensing is free of the error accumulation problem faced by odometry.

5 PERFORMANCE EVALUATION
We conduct experiments with known ground truth in various environments to evaluate the performance of
AMF-based GP-assisted SLAM in the aspects of loop closure detection, map construction, localization, and
orientation sensing.
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5.1 Experiment Setup
5.1.1 Mobile platform and data collection. We set up a mobile platform to automate the controlled experiments
that can collect AMF/GMF/Wi-Fi and odometry data as well as the ground-truth trajectories in indoor environ-
ments. As illustrated by Fig. 17, we mount a 6DoF robotic arm (Interbotix WidowX 250) onto a wheel-based robot
(Turtlebot 3 Burger). The robotic arm clamps the triaxial AMF sensor. The robot and arm are controlled by two
Raspberry Pi single-board computers separately that run Robot Operating System (ROS). The robot provides the
capability of roaming in the target space by following a predefined trajectory on the floor plane; the 6DoF robotic
arm provides the capability of alternating altitude and orientation of the AMF sensor. By following coordinated
movement scripts specified to the robot and the arm, the AMF sensor’s movement forms a known trajectory in
the 3D space as the ground truth. The robot’s and arm’s built-in odometries are sampled at 10 samples per second
(sps). These two odometries are combined to form a single odometry based on the known relationship between
the robot’s and the arm’s coordinate systems. The triaxial AMF sensor is sampled at 1 ksps. For comparison, we
use the same mobile platform to carry a smartphone (Samsung Galaxy S7) to collect the GMF and Wi-Fi RSS
data along the same trajectory at the sampling rate of 100 sps and 0.2 sps, respectively. All data traces are offline
analyzed.

5.1.2 Evaluated indoor sites. We conduct experiments in eight indoor sites with different powerline distributions
and densities of appliances as shown in Fig. 18. At each site, we predetermine the 3D trajectories 𝑇𝑀 and 𝑇𝐿 for
mapping and localization, respectively. The ground truth data of these trajectories are obtained by the following
procedures. First, we measure the position and orientation of the AMF sensor at the starting point of each
trajectory as the initial values. Next, we use kinematic models to calculate the position and orientation of the
AMF sensor at every sampling instant of the odometry based on known information from the mobile platform,
which are the constant translational velocity of 0.1m/s and a constant rotational velocity of 0.2 rad/s as well
as the movement control commands. Then, by attaching the calculated results orderly after the initial values,
we obtain the 3D location trace where the mobile platform would pass by when following the trajectory. In
the experiments, we make marks on the ground or draw lane lines as references to check whether the mobile
platform correctly executes the control commands and accurately follows the trajectory. This ensures the quality
of the ground truth data. During mapping, we command the mobile platform to follow the predefined trajectory
𝑇𝑀 for multiple loops continuously at the constant velocity. Fig. 21a shows the predefined trajectory in Lab A.
The collected data trace is used for map construction. During localization, we command the mobile platform to
follow the predefined trajectory 𝑇𝐿 . Each short signal sequence collected on 𝑇𝐿 is used to perform localization. To
evaluate the robustness against trajectory deviations during the localization phase, we consider three cases: i) 𝑇𝐿
is the same as 𝑇𝑀 , ii) 𝑇𝐿 is close to 𝑇𝑀 and has crossings with 𝑇𝑀 , iii) 𝑇𝐿 has no crossings with 𝑇𝑀 . The results
reported in this section are obtained under the first case unless specified otherwise. The enclosed areas, lengths,
and altitude variations of the ground-truth trajectories at the eight sites are summarized in Table 1.

Table 1. Statistics of the ground-truth trajectory during mapping phase.

Site Lab A Lab B Office
lobby

Demo
room

Display
room

Print
room

Car
park Library

Enclosed area (m2) 8 53.2 58 10.6 32.5 33.5 548.5 421.4
Length (m) 18.6 45.6 63.8 13.3 27.9 26.2 133.2 87.7

Altitude variation (cm) 40 10 30 40 50 40 45 40
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(a) Lab A (b) Lab B (c) Office Lobby (d) Demo room

(e) Display room (f) Print room (g) Car park (h) Library

Fig. 18. Evaluated indoor environments.

5.2 Evaluation Results
5.2.1 Loop closure detection performance. In loop closure detection, the similarity metric needs to distinguish
between true and false loop closures when comparing the AMF intensity sequences. To find a valid similarity
metric, we compare the ambiguity discrimination abilities of typical similarity metrics [48], which are the
Euclidean distance, cosine distance and Pearson correlation distance. For each metric, the distances of all possible
combinations of two AMF intensity sequences are represented by a similarity matrix, where a smaller element
indicates that the two AMF intensity sequences have a bigger chance to be a loop closure pair. Considering a
single-loop AMF intensity trace, the similarity matrix of an ideal metric will show small diagonal terms with
prominent differences from the large off-diagonal terms. Fig. 19 shows the performance of different similarity
metrics based on the same single-loop AMF intensity trace. In Fig. 19a, there is a clear concentration of small
values in diagonal positions, which indicates that the Euclidean distance metric can efficiently identify loop
closures using a threshold. While in Fig. 19b and Fig. 19c, many off-diagonal terms have similar small values as
the diagonal terms, which makes it difficult for the cosine distance and Pearson correlation distance to distinguish
loop closures by a threshold. Therefore, we apply the Euclidean distance with a threshold as the criterion for
loop closing detection based on AMF intensity sequences.

As discussed in §4.2, the threshold 𝜏 is an important hyperparameter of the loop closure detection. Its proper
setting depends on the AMF. When the AMF contains large spatial deviations, the collected AMF intensity trace
has more fluctuations. If the threshold 𝜏 is too small, more true loop closure pairs will be missed. In contrast, when
the AMF intensity field is even, a too large setting for 𝜏 may lead to excessive false positive loop closure pairs.
Empirically, a few false positives can greatly impair the map reconstruction performance, whereas false negatives
have a much lower impact on the map reconstruction. Thus, we aim to find a setting for 𝜏 that maintains low false
positive rates in a range of indoor environments. To this end, we measure the receiver operating characteristic
(ROC) of the loop closure detection algorithm in four indoor sites. Fig. 20 shows the ROC curves, where each
curve is obtained by varying 𝜏 . The false positive rate (FPR) is measured by the percentage of non-loop closure
pairs wrongly detected as loop closure pairs; the true positive rate (TPR) is measured by the percentage of loop

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 182. Publication date: December 2023.



182:18 • Wang et al.

(a) Euclidean distance (b) Consin distance (c) Correlation distance

Fig. 19. Comparsion of similarity measures of AMF intensity sequences.
Fig. 20. ROCs of loop closure de-
tection.

closure pairs correctly detected. As the AMF distribution varies for different sites, the ideal settings for 𝜏 at all
sites, which lead to the respective maximum TPR subject to zero FPR, may not be the same. As such, we find
the largest universal 𝜏 setting such that the resulting operating points on the four ROC curves fall within the
shaded area shown in Fig. 20 with FPR ≤ 4%. Empirically, 4% is an acceptable FPR that does not lead to severe
impairment of map reconstruction.

5.2.2 Mapping performance. We conduct a set of experiments in Lab A by following the designed trajectory
shown in Fig. 21a, in which the AMF/smartphone carried by the robotic arm experiences both horizontal and
vertical movements in the 3D space.

Visualization of reconstructed trajectories. Fig. 21b shows the trajectory reconstructed from the odometry only.
The large deviations from the ground truth are due to cumulative errors over long runs. Fig. 21c shows the
trajectories reconstructed by SLAM based on the uniaxial and triaxial AMF sensors, respectively. Compared with
the result shown in Fig. 21b, both the uniaxial and triaxial AMF sensors improve the reconstruction accuracy
because the odometry drift can be rectified by AMF sensing. In addition, visually, the reconstruction by the
triaxial AMF sensor is closer to the ground truth. We will present the improvement quantification shortly. Fig. 21d
compares the trajectories reconstructed by triaxial AMF data with and without GP regularization. Visually, with
GP regularization, the reconstructed trajectory is closer to the ground truth.

Visualization of constructed maps. Fig. 22a shows the map constructed by tagging the measured AMF intensities
(represented by colors) onto the trajectory reconstructed using Eq. (2) without the GP regularization in the graph
optimization and also without GP augmentation. Therefore, the map provides limited information on in-trajectory
AMF intensities. Fig. 22 shows the GP-augmented map. Specifically, the trajectory shown by the black curve is
reconstructed by Algorithm 1 with the GP regularization in the graph optimization. In addition, the GP posteriors
are used to augment the map. Therefore, the augmented map fills up the entire space and can better support
localization when the mobile’s movement deviates from the map trajectory.

Mapping performance of various sensing modalities. Fig. 23a shows the cumulative distribution functions (CDFs)
of the individual errors of the trajectories reconstructed by SLAM systems with various sensing modalities in
Lab A, where the individual error is the Euclidean distance between a location in the recovered trajectory and
the corresponding location in the ground truth trajectory. We use the mean error, i.e., the average value of all
individual errors, as a nutshell metric to describe the overall performances of different SLAM systems. The SLAM
systems based on Wi-Fi RSS and odometry have large mapping errors. Specifically, the mean mapping error
based on Wi-Fi RSS is 1.47m. The GMF-based SLAM gives a mean error of 0.56m, which is 17.3% larger than that
of the SLAM based on uniaxial AMF sensing, i.e., 0.46m. Among the AMF-based SLAM systems, the mapping
accuracy is improved by upgrading from uniaxial to triaxial sensing and then by integrating GP regularization.
The most outperforming SLAM system, i.e., triaxial AMF with GP, achieves a mean error of 0.31m.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 182. Publication date: December 2023.



Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines • 182:19

(a) An example trajectory (bird’s-eye view) (b) Odometry

(c) Uniaxial and triaxial AMF (d) Triaxial AMF with or without GP

Fig. 21. Reconstructed trajectories with odometry only, uniaxial and triaxial AMF sensors, with and without GP.

(a) AMF map on the reconstructed trajectory (b) GP-augmented AMF map

Fig. 22. Constructed AMF maps.

Mapping performance at eight sites.We evaluate the mapping performance of the triaxial and uniaxial AMF-
based SLAM systems at all eight sites. Fig. 24a shows the box plots of the mapping errors, where a box’s central
line indicates the median, the bottom and top edges indicate the 25th and 75th percentiles, the whiskers represent
the non-outlier extreme values. The mapping achieves sub-1.5m median errors and its performance slightly
varies in the first six indoor environments, because the powerline distributions and the electrical loading of these
environments are different. In the two larger sites of the car park and library, the mapping has larger median
errors but still within 2m, because of the lower density of electrification. The uniaxial and triaxial AMF based
systems have comparable median errors in environments with small area and dense powerline distribution such
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(a) Distribution of various mapping errors (b) Distribution of localization errors

Fig. 23. Mapping and localization performances of various sensing modalities in Lab A.

(a) Box plots of mapping errors at various sites (b) Box plots of localization errors at various sites

Fig. 24. Performances of mapping and localization conducted within the map trajectory.

Fig. 25. Performance of in-trajectory, partially in-trajectory, and out-trajectory localization based on (1) triaxial AMF with
GP regularization and augmentation and (2) uniaxial AMF without GP regularization and augmentation.

as the demo room and print room. However, the triaxial AMF sensing consistently outperforms the uniaxial AMF
sensing at all sites. This superiority is more pronounced when the environment has relatively sparse powerline
distribution, e.g., office lobby, or covers a large area, e.g., car park and library. This suggests the better capability
of the triaxial AMF sensing in dealing with larger and more challenging environments.

5.2.3 Localization performance. The localization performance is closely related to the quality of the map. Different
from most existing SLAM studies [13, 19] that only perform localization within the trajectory of the map, the
GP-augmented map enables the localization in the nearby region of the trajectory. Thus, we consider three
scenarios: (i) In-trajectory localization: We use either the map constructed by Eq. (2) without the GP regularization
or the map constructed by Eq. (4) with the GP regularization. During the localization phase, the mobile still exactly
follows the map trajectory. (ii) Partially in-trajectory localization: Based on the GP-augmented map, during the
localization phase, the mobile’s ground-truth trajectory is close to and has crossings with the map trajectory. (iii)
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Fig. 26. Triaxial AMF sensor and
odometry orientation errors.

Fig. 27. Orientation error of
the path.

Fig. 28. Mapping performances of different 3D SLAM ap-
proaches at various sites.

Out-trajectory localization: From the GP-augmented map, during the localization phase, the mobile’s ground-truth
trajectory has no crossings with and is within 3𝑙𝑘 from the map trajectory.
In-trajectory localization performance. Fig. 23b shows the localization error CDFs of various systems in Lab

A. The localization performance trend of these systems is similar to their mapping performance trend shown
in Fig. 23a. As the result based on the odometry has much larger errors than all the other methods, to better
illustrate the performance of the other sensing modalities, we omit the CDF plot of the odometry based method
and present its mean error of 6.42m in the annotation. The triaxial AMF with GP regularization achieves the
lowest mean error of 0.93m. The mean localization errors based on Wi-Fi and GMF are 3.80m and 1.62m. Thus,
the triaxial AMF with GP regularization outperforms Wi-Fi and GMF by 75.5% and 42.6%, respectively. The
mean error achieved by the uniaxial AMF without GP regularization is 1.36m, which is slightly better than the
1.59m in-trajectory localization mean error achieved by the prior work [28] in a lab space. Thus, the triaxial
AMF with GP regularization is 31.6% better than that of the uniaxial AMF without GP regularization in terms of
the mean localization error. More results at different sites are shown in Fig. 24b. The median errors achieved by
triaxial AMF with GP regularization at the eight sites are 0.91m, 1.74m, 2.87m, 1.42m, 1.78m, 0.94m, 3.27m,
and 3.03m. In short, the triaxial AMF-based GP-assisted SLAM achieves sub-1m to 3m localization errors. At
all sites, the triaxial AMF with GP regularization outperforms the uniaxial AMF. The localization errors show a
similar advancement pattern as the mapping errors in Fig. 24a, where the improvements are more apparent in
the office lobby, car park, and library.

Performance of partially in-trajectory and out-trajectory localization. At each site, we conduct experiments for
partially in-trajectory and out-trajectory localization based on (1) the triaxial AMF with GP regularization and
augmentation and (2) the uniaxial AMF without GP regularization and augmentation. Fig. 25 shows the error
bars of the localization errors of different SLAM systems at all eight sites, where the bar represents the mean
localization error and the whiskers represent the maximum and minimum errors. At each site, the minimum
errors of all SLAM systems are similar, while the differences can be found in the mean and maximum errors. The
out-trajectory localization exhibits the largest mean and maximum errors, whereas the in-trajectory achieves
the lowest mean and maximum errors. The triaxial AMF consistently outperforms the uniaxial AMF in each of
the partially in-trajectory and out-trajectories scenarios. In particular, in the out-trajectory scenario, the triaxial
AMF with GP regularization and augmentation outperforms the uniaxial AMF without GP regularization and
augmentation by 30.5% on average in terms of mean localization error across the eight sites. Meanwhile, in both
scenarios, the triaxial AMF based systems show more improvements on mean error in office lobby, car park, and
library, which is consistent with the mapping performance trends shown in Fig. 24.

5.2.4 Orientation sensing performance. The 6DoF robotic arm carries the triaxial AMF sensor and follows a
prescribed path for multiple loops to collect an AMF trace. The sensor orientations are different at the same
position in different loops. We take the prescribed orientation as the ground truth and the odometry’s orientation
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(a) Position estimation MAEs. (b) Orientation estimation MAEs.

Fig. 29. Localization performances of different 3D SLAM approaches at various sites.

sensing results in the first loop as the base as described in §4.3. Fig. 26 shows the orientation sensing error traces
of odometry and our triaxial AMF sensor. The error accumulation problem of odometry can be clearly seen.
Differently, the results given by the AMF sensor have stable error distributions over time. Fig. 27 shows the
distributions of the orientation sensing errors over the entire experiment, where the bar represents the mean and
whiskers represent the minimum and maximum. The AMF sensor achieves sub-2° mean errors in each angular
dimension, while the odometry gives larger mean errors.

5.2.5 Mapping and localization performances comparison of different 3D SLAM approaches. We conduct experi-
ments at various sites as shown in Fig. 18 to compare the mapping and localization performances of the proposed
approach, denoted by Tri-AMF, with three recent 3D SLAM approaches, discussed in §2, where two GMF-based
approaches are denoted by EKF-Mag [51] and Dual-Mag [35], and one approach based on Wi-Fi RSS is denoted by
LIDAUS [46]. Due to the limitation of implementing the real unmanned aerial vehicle and the drilling machine in
indoor environments, the GMF andWi-Fi RSS data is collected by the built-in IMU andWi-Fi signal receiver of the
smartphone. Noted that to follow the setup of dual magnetic sensors in Dual-Mag, two smartphones of the same
type are used for GMF data collection. At each site, the mobile carries the triaxial AMF sensor/smartphone(s) to
collect the mapping and localization data following the same trajectory. The mapping performance evaluation
focuses on the deviation of the reconstructed 3D map from the ground truth. The localization performance
considers the estimation errors in both position and orientation. To have a straightforward view of the localization
error in 3D space, we use Euclidean distance and the angular distance [20] to measure the position and orientation
difference between the estimation and ground truth, respectively. Fig. 28 shows the bar chart of mapping errors
of different SLAM approaches at various sites, where each bar represents the mean absolute error (MAE) of
the mapping error. It can be found that all approaches perform better at the smaller-scale sites. Across all sites,
Tri-AMF always outperforms with the lowest MAEs. We compare the in-trajectory localization performances of
these approaches by calculating the MAEs of position and orientation estimations at each site and illustrate the
results in Fig.29. We can see that both the postion and orientation estimation performances follow the trend of
mapping performance in Fig. 28. Benefiting from its more reliable map, Tri-AMF can make more accurate position
and orientation estimations than the other approaches at each site. Therefore, better mapping and localization
results can be expected by employing the proposed Tri-AMF approach.

6 DISCUSSION
In this section, we introduce two mobile platforms for powerline AMF sensing and discuss several other use cases
of the AMF sensor which worth further exploration in future work.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 4, Article 182. Publication date: December 2023.



Orientation-Aware 3D SLAM in Alternating Magnetic Field from Powerlines • 182:23

6.1 Mobile Platforms for Powerline AMF Sensing
In our implementation, the triaxial AMF sensor is integrated with a terrestrial mobile platform to collect the
powerline AMF signals in 3D indoor environments. This mobile platform is customized for general indoor
sensing tasks as shown in Fig. 18. In addition to ground-based sensing with a terrestrial mobile platform, the
use of unmanned aerial vehicles (UAVs) enables free space sensing, which has found wide applications such as
monitoring, mapping, and surveying. In a recent work [26], a magnetic field sensor is housed by a customized
case installed under a UAV for magnetic field mapping in the indoor environment. When integrating the AMF
sensor on a UAV, certain specifics need to be considered. For instance, the measurements in [52] show that the
permanent magnet synchronous motor of the UAV can generate three magnetic interference signals. One of them
has a frequency of about 50 Hz which is similar to the mains frequency captured by the AMF sensor. Thus, a
sufficient separation distance between the sensor and UAV needs to be determined to avoid the interference from
the UAV’s motor [52, 61].

6.2 Other Applications of AMF Sensing
This paper applies triaxial AMF sensing for 3D SLAM and indoor localization. Moreover, the triaxial AMF sensing
can enable a broader range of applications, including interior layout planning, public health assessments, and
power infrastructure monitoring. We discuss several other possible use cases of the triaxial AMF sensor. First, the
triaxial AMF sensing helps generate detailed maps of the AMF distribution in indoor environments influenced by
powerlines. These maps are crucial for facility layout planning and public health considerations, because they
facilitate the identification of zones with unsafely high AMF intensities. For example, in the medical domain,
the presence of 50Hz/60Hz electromagnetic radiation and its harmonics can disrupt biopotential recordings [9].
Using the powerline AMF intensity map, such medical examinations can be arranged in areas exhibiting minimal
AMF interference, thereby yielding more precise diagnostic outcomes. Second, in the domain of daily healthcare,
human AMF exposure is gaining increasing attention due to the reported negative health impacts of powerline
AMF [21, 33]. Studies [6, 60] have shown the association between cancer occurrence and prolonged powerline
AMF exposure. A recent work [37] uses a uniaxial AMF sensor to assess AMF exposure of primary school students
in different classrooms. As the triaxial AMF sensor is more precise and informative, its improved sensing results
will be more reliable in determining the human AMF exposure level. Third, using triaxial AMF sensors enables
engineers and utility companies to monitor the powerline transmission status. By detecting abnormal AMF
patterns, the triaxial AMF based monitoring may provide early indication of equipment malfunctions. As triaxial
AMF sensing shows more advantages over uniaxial AMF sensing, in future work, it is interesting to study triaxial
AMF sensing for the above applications.

7 CONCLUSION
This paper studies an orientation-aware 3D SLAM in AMF, a 3D vector field of low-frequency magnetism induced
by powerlines distributed in the indoor space. We design a new resonate antenna-based triaxial AMF sensor to
overcome the susceptibility of the existing uniaxial AMF sensor to orientation variations. In addition, to better
cope with the high spatial variability of AMF, we design a GP-assisted SLAM algorithm that constructs the
GP-augmented AMF map characterizing the proximity of the explored trajectory. Extensive experiments in eight
indoor environments show that the proposed GP-assisted triaxial AMF SLAM system achieves sub-1m to 3m
median localization errors and outperforms the systems based on Wi-Fi RSS and geomagnetism by 75.5% and
42.6%. It also outperforms the uniaxial AMF SLAM system by 31.6% and 30.5% in the absence and presence of
trajectory deviations.
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